We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Parasites inflict many costs on their hosts. Understanding host–parasite relationship eco-evolutionary dynamics needs appreciation of how parasites affect individual fitness, survival and reproductive potential, and how they combine to influence population demography, dynamics and viability; also, how these processes drive microevolutionary processes that define natural and sexual selection. We synthesise work on the relationship between the red grouse and its main parasite, a gastrointestinal nematode. At individual level, we show how parasites impose a physiological cost, measured by immunosuppression and increased oxidative stress, and how their impact varies depending on contexts. We describe how parasite infection constrains expression of sexually selected traits and summarise how relationships between parasite, host and environment shape host population demography and dynamics. Genetic analyses in red grouse suggest nematode burden is moderately heritable, underpinned by a potentially large array of genes involved in the immune system, energy balance and broader homeostatic processes. There is no clear association between allele frequencies among populations and differences in nematode burdens. Possibly, beneficial alleles for parasite resistance cannot spread through the population due to the strong diversifying e?ects of gene ?ow and genetic drift.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.