We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Intestinal mucositis is an important toxic side effect of 5-fluorouracil (5-FU) treatment. Saccharomyces boulardii is known to protect from intestinal injury via an effect on the gastrointestinal microbiota. The objective of the present study was to evaluate the effect of S. boulardii on intestinal mucositis induced by 5-FU in a murine model. Mice were divided into saline, saline (control)+5-FU or 5-FU+S. boulardii (16 × 109 colony-forming units/kg) treatment groups, and the jejunum and ileum were removed after killing of mice for the evaluation of histopathology, myeloperoxidase (MPO) activity, and non-protein sulfhydryl group (mainly reduced glutathione; GSH), nitrite and cytokine concentrations. To determine gastric emptying, phenol red was administered orally, mice were killed 20 min after administration, and the absorbance of samples collected from the mice was measured by spectrophotometry. Intestinal permeability was measured by the urinary excretion rate of lactulose and mannitol following oral administration. S. boulardii significantly reversed the histopathological changes in intestinal mucositis induced by 5-FU and reduced the inflammatory parameters: neutrophil infiltration (control 1·73 (sem 0·37) ultrastructural MPO (UMPO)/mg, 5-FU 7·37 (sem 1·77) UMPO/mg and 5-FU+S. boulardii 4·15 (sem 0·73) UMPO/mg); nitrite concentration (control 37·00 (sem 2·39) μm, 5-FU 59·04 (sem 11·41) μm and 5-FU+S. boulardii 37·90 (sem 5·78) μm); GSH concentration (control 477·60 (sem 25·25) μg/mg, 5-FU 270·90 (sem 38·50) μg/mg and 5-FU+S. boulardii 514·00 (sem 38·64) μg/mg). Treatment with S. Boulardii significantly reduced the concentrations of TNF-α and IL-1β by 48·92 and 32·21 % in the jejunum and 38·92 and 61·79 % in the ileum. In addition, S. boulardii decreased the concentrations of chemokine (C–X–C motif) ligand 1 by 5-fold in the jejunum and 3-fold in the ileum. Interestingly, S. boulardii reduced the delay in gastric emptying (control 25·21 (sem 2·55) %, 5-FU 54·91 (sem 3·43) % and 5-FU+S. boulardii 31·38 (sem 2·80) %) and induced the recovery of intestinal permeability (lactulose:mannitol ratio: control 0·52 (sem 0·03), 5-FU 1·38 (sem 0·24) and 5-FU+S. boulardii 0·62 (sem 0·03)). In conclusion, S. boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in intestinal mucositis induced by 5-FU.
In this study randomly amplified polymorphic DNA (RAPD) fingerprinting is proposed for species identification of Gammarus, based on the electrophoretic position of amplified DNA bands. Three common marine amphipods of European estuaries—G. chevreuxi, G. insensibilis and G. locusta—were profiled using ten RAPD primers, accompanied by a careful morphological identification. Nine of these primers produced a very distinct species-specific RAPD profile, allowing unambiguous differentiation of amphipod species assayed. The RAPD fingerprints were here characterized by 8–12 amplicons for each primer. Each amplicon was visualized as a band of known molecular length, with characteristic band thickness and density. A total of 78 diagnostic bands, based on the most robust and evident amplicons found for each primer and species, are proposed for identification of the Gammarus species analysed. These results allowed us to identify an unknown amphipod species from a previous study as G. insensibilis, only based on the RAPD fingerprint. One primer was sufficient for this identification. A taxonomic identification system integrating molecular and morphological tools is proposed for Gammarus.
Email your librarian or administrator to recommend adding this to your organisation's collection.