We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Enrollment into a prospective cohort study of mother–preterm infant dyads during the COVID-19 pandemic progressed slower than anticipated. Enrollment occurred during the first week after preterm birth, while infants were still hospitalized. We hypothesized that slower enrollment was attributable to mothers testing positive for COVID-19 as hospital policies restricted them from entering the neonatal intensive care unit, thus reducing interactions with research staff. However, only 4.5% of 245 screened mothers tested COVID-19 positive. Only 24.9% of those screened, far fewer than anticipated, were eligible for enrollment. Assumptions about pandemic-related enrollment barriers were not substantiated in this pediatric cohort.
Consideration of individual differences in recovery after concussion has become a focus of concussion research. Sex and racial/ethnic identity as they may affect reporting of concussion symptoms have been studied at single time points but not over time. Our objective was to investigate the factors of self-defined sex and race/ethnicity in reporting of lingering concussion symptoms in a large sample of adolescents.
Participants and Methods:
Concussed, symptomatic adolescents (n=849; Female=464, Male=385) aged 13-18 years were evaluated within 30 days of injury at a North Texas Concussion Registry (ConTex) clinic. Participants were grouped by self-defined race/ethnicity into three groups: Non-Hispanic Caucasian (n=570), Hispanic Caucasian (n=157), and African American (n=122). Measures collected at the initial visit included medical history, injury related information, and the Sport Concussion Assessment Tool-5 Symptom Evaluation (SCAT-5SE). At a three-month follow-up, participants completed the SCAT-5SE. Pearson’s Chi-Square analyses examined differences in categorical measures of demographics, medical history, and injury characteristics. Prior to analysis, statistical assumptions were examined, and log base 10 transformations were performed to address issues of unequal group variances and nonnormal distributions. A three-way repeated measures ANOVA (Sex x Race/Ethnicity x Time) was conducted to examine total severity scores on the SCAT-5SE. Bonferroni post-hoc tests were performed to determine specific group differences. SPSS V28 was used for analysis with p<0.05 for significance. Data reported below has been back transformed.
Results:
A significant interaction of Time by Race/Ethnicity was found for SCAT-5SE scores reported at initial visit and three-month follow-up (F(2, 843)=7.362, p<0.001). To understand this interaction, at initial visit, Race/Ethnicity groups reported similar levels of severity for concussion symptoms. At three month follow-up, African Americans reported the highest level of severity of lingering symptoms (M= 3.925, 95% CIs [2.938-5.158]) followed by Hispanic Caucasians(M= 2.978, 95% CIs [2.2663.845]) and Non-Hispanic Caucasians who were the lowest(M= 1.915, 95% CIs [1.6262.237]). There were significant main effects for Time, Sex, and Race/Ethnicity. Average symptom levels were higher at initial visit compared to three-month follow-up (F(1, 843)=1531.526, p<0.001). Females had higher average symptom levels compared to males (F(1, 843)=35.58, p<0.001). For Race/Ethnicity (F(2, 843)=9.236, p<0.001), Non-Hispanic Caucasians were significantly different than African Americans (p<0.001) and Hispanic Caucasians (p=0.021) in reported levels of concussion symptom severity.
Conclusions:
Data from a large sample of concussed adolescents supported a higher level of reported symptoms by females, but there were no significant differences in symptom reporting between sexes across racial/ethnic groups. Overall, at three-months, the African American and Hispanic Caucasians participants reported a higher level of lingering symptoms than Non-Hispanic Caucasians. In order to improve care, the difference between specific racial/ethnic groups during recovery merits exploration into the factors that may influence symptom reporting.
New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology.
To examine temporal changes in coverage with a complete primary series of coronavirus disease 2019 (COVID-19) vaccination and staffing shortages among healthcare personnel (HCP) working in nursing homes in the United States before, during, and after the implementation of jurisdiction-based COVID-19 vaccination mandates for HCP.
Sample and setting:
HCP in nursing homes from 15 US jurisdictions.
Design:
We analyzed weekly COVID-19 vaccination data reported to the Centers for Disease Control and Prevention’s National Healthcare Safety Network from June 7, 2021, through January 2, 2022. We assessed 3 periods (preintervention, intervention, and postintervention) based on the announcement of vaccination mandates for HCP in 15 jurisdictions. We used interrupted time-series models to estimate the weekly percentage change in vaccination with complete primary series and the odds of reporting a staffing shortage for each period.
Results:
Complete primary series vaccination among HCP increased from 66.7% at baseline to 94.3% at the end of the study period and increased at the fastest rate during the intervention period for 12 of 15 jurisdictions. The odds of reporting a staffing shortage were lowest after the intervention.
Conclusions:
These findings demonstrate that COVID-19 vaccination mandates may be an effective strategy for improving HCP vaccination coverage in nursing homes without exacerbating staffing shortages. These data suggest that mandates can be considered to improve COVID-19 coverage among HCP in nursing homes to protect both HCP and vulnerable nursing home residents.
Childhood obesity prevention is critical to reducing the health and economic burden currently experienced by the Australian economy. System science has emerged as an approach to manage the complexity of childhood obesity and the ever-changing risk factors, resources and priorities of government and funders. Anecdotally, our experience suggests that inflexibility of traditional research methods and dense academic terminology created issues with those working in prevention practice. Therefore, this paper provides a refined description of research-specific terminology of scale-up, fidelity, adaptation and context, drawing from community-based system dynamics and our experience in designing, implementing and evaluating non-linear, community-led system approaches to childhood obesity prevention.
Design:
We acknowledge the importance of using a practice lens, rather than purely a research design lens, and provide a narrative on our experience and perspectives on scale-up, fidelity, context and adaptation through a practice lens.
Setting:
Communities.
Participants:
Practice-based researcher experience and perspectives.
Results:
Practice-based researchers highlighted the key finding that community should be placed at the centre of the intervention logic. This allowed communities to self-organise with regard to stakeholder involvement, capacity, boundary identification, and co-creation of actions implemented to address childhood obesity will ensure scale-up, fidelity, context and adaptation are embedded.
Conclusions:
We need to measure beyond primary anthropometric outcomes and focus on evaluating more about implementation, process and sustainability. We need to learn more from practitioners on the ground and use an implementation science lens to further understand how actions work. This is where solutions to sustained childhood obesity prevention will be found.
Migratory birds are implicated in dispersing haemosporidian parasites over great geographic distances. However, their role in sharing these vector-transmitted blood parasites with resident avian host species along their migration flyway is not well understood. We studied avian haemosporidian parasites in 10 localities where Chilean Elaenia, a long-distance Neotropical austral migrant species, spends part of its annual cycle to determine local parasite transmission among resident sympatric host species in the elaenia's distributional range across South America. We sampled 371 Chilean Elaenias and 1,818 birds representing 243 additional sympatric species from Brazilian wintering grounds to Argentinian breeding grounds. The 23 haemosporidian lineages found in Chilean Elaenias exhibited considerable variation in distribution, specialization, and turnover across the 10 avian communities in South America. Parasite lineage dissimilarity increased with geographic distance, and infection probability by Parahaemoproteus decreased in localities harbouring a more diverse haemosporidian fauna. Furthermore, blood smears from migrating Chilean Elaenias and local resident avian host species did not contain infective stages of Leucocytozoon, suggesting that transmission did not take place in the Brazilian stopover site. Our analyses confirm that this Neotropical austral migrant connects avian host communities and transports haemosporidian parasites along its distributional range in South America. However, the lack of transmissive stages at stopover site and the infrequent parasite lineage sharing between migratory host populations and residents at breeding and wintering grounds suggest that Chilean Elaenias do not play a significant role in dispersing haemosporidian parasites, nor do they influence local transmission across South America.
For 20 years the UK Government has recognised that food advertising plays a part in food choices and hence diets of the population, particularly for children. In 2007 the UK brought in regulations to stop the advertising of less healthy foods on television (TV) during child-specific programming. Less healthy foods were defined using the 2004/2005 nutrient profiling model (NPM) as products high in saturated fat, salt and sugar (HFSS). Evaluations showed that children were still seeing and being affected by the adverts for less healthy foods. To try to mitigate childhood obesity, in 2018, the UK Government announced its intention to consult on further restrictions on the advertising of HFSS products on TV and online. Two years later, the intention to implement a 9pm advertising ban on TV and a further consultation on restricting online advertising of HFSS products was announced. New legislative controls on the advertising of HFSS foods are expected to be brought into legislation in the UK in January 2024. In the present paper, the history of advertising restrictions in the UK and the evidence informing them is reviewed. There will also be a reflection on where further actions might be needed in due course.
Collaboration is common practice within design disciplines and beyond. Brainstorming, discussions, and prototyping tend to occur within the same physical space. The reduction of human interaction during the COVID-19 pandemic disrupted these practices. In this paper, we focus on the possibilities and challenges of remote prototyping of four student teams by combining a double diamond approach with tools to overcome remote work challenges. The results were analyzed to understand crucial tools, advantages, and obstacles. The key challenges and opportunities were then identified and examined.
Background:Candida auris is an emerging multidrug-resistant yeast that is transmitted in healthcare facilities and is associated with substantial morbidity and mortality. Environmental contamination is suspected to play an important role in transmission but additional information is needed to inform environmental cleaning recommendations to prevent spread. Methods: We conducted a multiregional (Chicago, IL; Irvine, CA) prospective study of environmental contamination associated with C. auris colonization of patients and residents of 4 long-term care facilities and 1 acute-care hospital. Participants were identified by screening or clinical cultures. Samples were collected from participants’ body sites (eg, nares, axillae, inguinal creases, palms and fingertips, and perianal skin) and their environment before room cleaning. Daily room cleaning and disinfection by facility environmental service workers was followed by targeted cleaning of high-touch surfaces by research staff using hydrogen peroxide wipes (see EPA-approved product for C. auris, List P). Samples were collected immediately after cleaning from high-touch surfaces and repeated at 4-hour intervals up to 12 hours. A pilot phase (n = 12 patients) was conducted to identify the value of testing specific high-touch surfaces to assess environmental contamination. High-yield surfaces were included in the full evaluation phase (n = 20 patients) (Fig. 1). Samples were submitted for semiquantitative culture of C. auris and other multidrug-resistant organisms (MDROs) including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended-spectrum β-lactamase–producing Enterobacterales (ESBLs), and carbapenem-resistant Enterobacterales (CRE). Times to room surface contamination with C. auris and other MDROs after effective cleaning were analyzed. Results:Candida auris colonization was most frequently detected in the nares (72%) and palms and fingertips (72%). Cocolonization of body sites with other MDROs was common (Fig. 2). Surfaces located close to the patient were commonly recontaminated with C. auris by 4 hours after cleaning, including the overbed table (24%), bed handrail (24%), and TV remote or call button (19%). Environmental cocontamination was more common with resistant gram-positive organisms (MRSA and, VRE) than resistant gram-negative organisms (Fig. 3). C. auris was rarely detected on surfaces located outside a patient’s room (1 of 120 swabs; <1%). Conclusions: Environmental surfaces near C. auris–colonized patients were rapidly recontaminated after cleaning and disinfection. Cocolonization of skin and environment with other MDROs was common, with resistant gram-positive organisms predominating over gram-negative organisms on environmental surfaces. Limitations include lack of organism sequencing or typing to confirm environmental contamination was from the room resident. Rapid recontamination of environmental surfaces after manual cleaning and disinfection suggests that alternate mitigation strategies should be evaluated.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars (
$\epsilon_r\lesssim10^{-4}$
), the fraction of magnetic energy in the GRB jet (
$\epsilon_B\lesssim2\times10^{-4}$
), and the radio emission efficiency of the magnetar remnant (
$\epsilon_r\lesssim10^{-3}$
). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of
$z\sim0.6$
. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination
$<\!{+}30^{\circ}$
) with an angular resolution of
${\approx}2$
arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median
$z \approx 0.064$
) radio sources with
$S_{200\,\mathrm{MHz}} > 55$
mJy across an area of
${\approx}16\,700\,\mathrm{deg}^{2}$
. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and
${\sim}1$
GHz. For the AGN, the median spectral index between 200 MHz and
${\sim}1$
GHz,
$\alpha_{\mathrm{high}}$
, is
$-0.600 \pm 0.010$
(where
$S \propto \nu^{\alpha}$
) and the median spectral index within the GLEAM band,
$\alpha_{\mathrm{low}}$
, is
$-0.704 \pm 0.011$
. For the SF galaxies, the median value of
$\alpha_{\mathrm{high}}$
is
$-0.650 \pm 0.010$
and the median value of
$\alpha_{\mathrm{low}}$
is
$-0.596 \pm 0.015$
. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies (
$\alpha_{\mathrm{low}} < -1.2$
). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a
$3\sigma$
persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in
$3\sigma$
limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a
$6\sigma$
fluence upper-limit range from 570 Jy ms at DM
$=3\,000$
pc cm–3 (
$z\sim 2.5$
) to 1 750 Jy ms at DM
$=200$
pc cm–3 (
$z\sim 0.1)$
, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.
Early in the coronavirus disease 2019 (COVID-19) pandemic, the CDC recommended collection of a lower respiratory tract (LRT) specimen for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) testing in addition to the routinely recommended upper respiratory tract (URT) testing in mechanically ventilated patients. Significant operational challenges were noted at our institution using this approach. In this report, we describe our experience with routine collection of paired URT and LRT sample testing. Our results revealed a high concordance between the 2 sources, and that all children tested for SARS-CoV-2 were appropriately diagnosed with URT testing alone. There was no added benefit to LRT testing. Based on these findings, our institutional approach was therefore adjusted to sample the URT alone for most patients, with LRT sampling reserved for patients with ongoing clinical suspicion for SARS-CoV-2 after a negative URT test.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
We aimed to investigate the heterogeneity of seasonal suicide patterns among multiple geographically, demographically and socioeconomically diverse populations.
Methods
Weekly time-series data of suicide counts for 354 communities in 12 countries during 1986–2016 were analysed. Two-stage analysis was performed. In the first stage, a generalised linear model, including cyclic splines, was used to estimate seasonal patterns of suicide for each community. In the second stage, the community-specific seasonal patterns were combined for each country using meta-regression. In addition, the community-specific seasonal patterns were regressed onto community-level socioeconomic, demographic and environmental indicators using meta-regression.
Results
We observed seasonal patterns in suicide, with the counts peaking in spring and declining to a trough in winter in most of the countries. However, the shape of seasonal patterns varied among countries from bimodal to unimodal seasonality. The amplitude of seasonal patterns (i.e. the peak/trough relative risk) also varied from 1.47 (95% confidence interval [CI]: 1.33–1.62) to 1.05 (95% CI: 1.01–1.1) among 12 countries. The subgroup difference in the seasonal pattern also varied over countries. In some countries, larger amplitude was shown for females and for the elderly population (≥65 years of age) than for males and for younger people, respectively. The subperiod difference also varied; some countries showed increasing seasonality while others showed a decrease or little change. Finally, the amplitude was larger for communities with colder climates, higher proportions of elderly people and lower unemployment rates (p-values < 0.05).
Conclusions
Despite the common features of a spring peak and a winter trough, seasonal suicide patterns were largely heterogeneous in shape, amplitude, subgroup differences and temporal changes among different populations, as influenced by climate, demographic and socioeconomic conditions. Our findings may help elucidate the underlying mechanisms of seasonal suicide patterns and aid in improving the design of population-specific suicide prevention programmes based on these patterns.
Antibiotic use in nursing homes is often inappropriate, in terms of overuse and misuse, and it can be linked to adverse events and antimicrobial resistance. Antimicrobial stewardship programs (ASPs) can optimize antibiotic use by minimizing unnecessary prescriptions, treatment cost, and the overall spread of antimicrobial resistance. Nursing home providers and residents are candidates for ASP implementation, yet guidelines for implementation are limited.
Objective:
To support nursing home providers with the selection and adoption of ASP interventions.
Design and Setting:
A multiphase modified Delphi method to assess 15 ASP interventions across criteria addressing scientific merit, feasibility, impact, accountability, and importance. This study included surveys supplemented with a 1-day consensus meeting.
Participants:
A 16-member multidisciplinary panel of experts and resident representatives.
Results:
From highest to lowest, 6 interventions were prioritized by the panel: (1) guidelines for empiric prescribing, (2) audit and feedback, (3) communication tools, (4) short-course antibiotic therapy, (5) scheduled antibiotic reassessment, and (6) clinical decision support systems. Several interventions were not endorsed: antibiograms, educational interventions, formulary review, and automatic substitution. A lack of nursing home resources was noted, which could impede multifaceted interventions.
Conclusions:
Nursing home providers should consider 6 key interventions for ASPs. Such interventions may be feasible for nursing home settings and impactful for improving antibiotic use; however, scientific merit supporting each is variable. A multifaceted approach may be necessary for long-term improvement but difficult to implement.
Antibiotics are commonly used in intensive care units (ICUs), yet differences in antibiotic use across ICUs are unknown. Herein, we studied antibiotic use across ICUs and examined factors that contributed to variation.
Methods:
We conducted a retrospective cohort study using data from Ontario’s Critical Care Information System (CCIS), which included 201 adult ICUs and 2,013,397 patient days from January 2012 to June 2016. Antibiotic use was measured in days of therapy (DOT) per 1,000 patient days. ICU factors included ability to provide ventilator support (level 3) or not (level 2), ICU type (medical-surgical or other), and academic status. Patient factors included severity of illness using multiple-organ dysfunction score (MODS), ventilatory support, and central venous catheter (CVC) use. We analyzed the effect of these factors on variation in antibiotic use.
Results:
Overall, 269,351 patients (56%) received antibiotics during their ICU stay. The mean antibiotic use was 624 (range 3–1460) DOT per 1,000 patient days. Antibiotic use was significantly higher in medical-surgical ICUs compared to other ICUs (697 vs 410 DOT per 1,000 patient days; P < .0001) and in level 3 ICUs compared to level 2 ICUs (751 vs 513 DOT per 1,000 patient days; P < .0001). Higher antibiotic use was associated with higher severity of illness and intensity of treatment. ICU and patient factors explained 47% of the variation in antibiotic use across ICUs.
Conclusions:
Antibiotic use varies widely across ICUs, which is partially associated with ICUs and patient characteristics. These differences highlight the importance of antimicrobial stewardship to ensure appropriate use of antibiotics in ICU patients.