We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the efficacy of detergent and friction on removal of traditional biofilm and cyclic-buildup biofilm (CBB) from polytetrafluoroethylene (PTFE) channels and to evaluate the efficacy of glutaraldehyde to kill residual bacteria after cleaning.
Methods:
PTFE channels were exposed to artificial test soil containing 108 CFU/mL of Pseudomonas aeruginosa and Enterococcus faecalis, followed by full cleaning and high-level disinfection (HLD) for five repeated rounds to establish CBB. For traditional biofilm, the HLD step was omitted. Cleaning with enzymatic and alkaline detergents, bristle brush, and Pull Thru channel cleaner were compared to a water flush only. Carbohydrate, protein, viable count, adenosine triphosphate (ATP) levels were analyzed and atomic force microscopy (AFM) was performed.
Results:
In the absence of friction, cleaning of traditional biofilm and CBB was not effective compared to the positive control (Dunn-Bonferroni tests; P > .05) regardless of the detergent used. ATP, protein, and carbohydrate analyses were unable to detect traditional biofilm or CBB. The AFM analysis showed that fixation resulted in CBB being smoother and more compact than traditional biofilm.
Conclusion:
Friction during the cleaning process was a critical parameter regardless of the detergent used for removal of either traditional biofilm or CBB. Glutaraldehyde effectively killed the remaining microorganisms regardless of the cleaning method used.
Most reusable biopsy forceps and all of the currently available single-use biopsy forceps do not have a port that allows fluid flow down the inner tubular shaft of the device. Reusable biopsy forceps are widely used and reprocessed in healthcare facilities, and single-use biopsy forceps are reprocessed either in-house (eg, in Canada and Japan) or by third-party reprocessors (eg, in the United States). The objective of this study was to determine the cleaning efficacy of automated narrow-lumen sonic irrigation cleaning, sonication-only cleaning, and manual cleaning for biopsy forceps.
Design.
A simulated-use study was performed by inoculating the inner channel of single-use biopsy forceps with artificial test soil containing both Enterococcus faecalis and Geobacillus stearothermophilus at concentrations of 106 colony-forming units per milliliter. The cleaning methods evaluated were manual cleaning, sonication-only cleaning, and “retroflush” cleaning by an automated narrow-lumen irrigator. Bioburden and organic soil reduction after washing was evaluated. Forceps used in biopsies of patients were also tested to determine the worst-case soiling levels.
Results.
Only retroflush irrigation cleaning could effectively remove material from within the shaft portion of the biopsy forceps: it achieved an average reduction of more than 95% in levels of protein, hemoglobin, carbohydrate, and endotoxin. However, even this method of cleaning was not totally effective, as only a 2 log10 reduction in bioburden could be achieved, and there were low residual levels of hemoglobin and carbohydrate.
Conclusion.
The data from this evaluation indicate that manual and sonication-only cleaning methods for biopsy forceps were totally ineffective in removing material from within the biopsy forceps. Even the use of retroflush cleaning was not totally effective. These findings suggest that in-hospital reprocessing of biopsy forceps with currently available equipment and cleaning methods is suboptimal.
To review experience with methicillin-resistant Staphylococcus aureus (MRSA) in tertiary acute-care teaching hospitals on the Canadian prairies.
Design:
Retrospective review for a 36-month period, 1990 through 1992.
Setting:
Five tertiary acute-care teaching hospitals in three Canadian prairie provinces.
Methods:
MRSA isolates and susceptibility were identified through the clinical microbiology laboratory at each institution. For each patient, data collected included duration of institutional residence prior to isolation, patient ethnic background, age, sex, and antimicrobial susceptibility. Epidemiologic typing of strains used restriction fragment length polymorphism analysis by pulsed-field gel electrophoresis.
Results:
Two hundred fifty-nine MRSA isolates were identified in 135 patients during the 36 months, with substantial institutional variation in number of isolates. No consistent increase in yearly numbers of isolates was apparent. Patients usually had MRSA identified at admission (62%); only one of five centers had the majority of isolates acquired nosocomially. Patients with MRSA present at admission were more frequently of aboriginal (First Nations) ethnicity (62% compared with 14% of nosocomial; P<0.001). Pulsed-field gel electrophoresis of 167 isolates from 135 patients revealed 46 different strains with little interprovincial or inter-institutional identity of strains.
Conclusions:
MRSA isolated in patients in tertiary care institutions in these three Canadian provinces usually is acquired prior to admission. A disproportionate number of isolates are identified in aboriginal Canadians. Epidemiologic typing was consistent with a polyclonal origin of MRSA in this geographic area.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.