We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Investigations are conducted on the effect of wall proximity on the flow around a cylinder under an axial magnetic field, using the electrical potential probe technology to measure the velocity of liquid metal flow. The study focused on the impact of the inlet velocity of the fluid, the magnetic field and wall proximity on the characteristics of velocity fields, particularly on the vortex-shedding mode. Based on different magnitudes of the magnetic field and the distance from the cylinder to the duct wall, three types of vortex-shedding modes are identified, (I) shear layer oscillation state, (II) quasi-two-dimensional vortex-shedding states and (III) transition of the magnetohydrodynamic to hydrodynamic Kármán street. The transitions between these modes are analysed in detail. The experimental results show that the weak wall-proximity effect leads to the formation of the Kármán vortex street, while a reverse Kármán vortex street and secondary vortices emerge under a strong wall-proximity effect. It is noticed that the Kelvin–Helmholtz instability drives vortex shedding under regime I, leading to an increase in the Strouhal number (St) with stronger magnetic fields. Additionally, under a strong axial magnetic field, the wall-proximity effect (‘Shercliff layer effect’) promotes the instability of shear layers on both sides of the cylinder. These unique coupling effects are validated by variations in modal coefficients and energy proportions under different vortex-shedding regimes using the proper orthogonal decomposition method.
Characterised by the extensive use of obsidian, a blade-based tool inventory and microblade technology, the late Upper Palaeolithic lithic assemblages of the Changbaishan Mountains are associated with the increasingly cold climatic conditions of Marine Isotope Stage 2, yet most remain poorly dated. Here, the authors present new radiocarbon dates associated with evolving blade and microblade toolkits at Helong Dadong, north-east China. At 27 300–24 100 BP, the lower cultural layers contain some of the earliest microblade technology in north-east Asia and highlight the importance of the Changbaishan Mountains in understanding changing hunter-gatherer lifeways in this region during MIS 2.
Social determinants of health (SDoH), such as socioeconomics and neighborhoods, strongly influence health outcomes. However, the current state of standardized SDoH data in electronic health records (EHRs) is lacking, a significant barrier to research and care quality.
Methods:
We conducted a PubMed search using “SDOH” and “EHR” Medical Subject Headings terms, analyzing included articles across five domains: 1) SDoH screening and assessment approaches, 2) SDoH data collection and documentation, 3) Use of natural language processing (NLP) for extracting SDoH, 4) SDoH data and health outcomes, and 5) SDoH-driven interventions.
Results:
Of 685 articles identified, 324 underwent full review. Key findings include implementation of tailored screening instruments, census and claims data linkage for contextual SDoH profiles, NLP systems extracting SDoH from notes, associations between SDoH and healthcare utilization and chronic disease control, and integrated care management programs. However, variability across data sources, tools, and outcomes underscores the need for standardization.
Discussion:
Despite progress in identifying patient social needs, further development of standards, predictive models, and coordinated interventions is critical for SDoH-EHR integration. Additional database searches could strengthen this scoping review. Ultimately, widespread capture, analysis, and translation of multidimensional SDoH data into clinical care is essential for promoting health equity.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
Acid-activated bentonites are utilized in many applications, including those that depend on their rheological properties and behavior, but little information is available regarding the rheological characteristics of this important industrial material. The purpose of this study was to investigate the effects of solids concentration, salt concentration, and pH value on the shear rate, shear stress, and other flow parameters of acid-activated bentonite suspensions. Activated Na-bentonite was prepared using sulfuric acid. Flow curves of the suspensions were modeled using the Herschel-Bulkley equation, which performed well for this system. The Herschel-Bulkley yield stress increased with the solids concentration and showed a maximum and minimum at the NaCl concentrations of 0.001 M and 0.01 M, respectively, and increased again slightly with further increases in NaCl concentration. The yield stress was at a maximum and a minimum at pH values of ≈5 and ≈7, respectively, followed by a slight increase with pH under alkaline conditions. The variations in dispersion rheological properties can be attributed to the change in the particle-association modes under different conditions.
Students’ attention deficit has a negative impact on their learning and development. In traditional teaching environments, students with attention deficit often face problems such as difficulty concentrating, distraction, difficulty maintaining sustained attention, and controlling attention. At the same time, teaching reform has become a focus of attention in the education industry, aiming to improve students’ learning outcomes and cultivate comprehensive development abilities.
Subjects and Methods
The study adopts an experimental group and a control group design. The experimental group received teaching reform measures, including improving teaching methods, increasing interaction and cooperative learning, etc; The control group continued to use traditional teaching methods. The study collected data on students’ attention deficit scores and academic performance, and used SPSS 22.0 statistical software for data processing and analysis to compare the differences between the experimental group and the control group.
Results
The attention deficit score of the experimental group students was significantly reduced, and the SPSS22.0 statistical method verified that the difference between the experimental group and the control group was statistically significant (P<0.05). In addition, the academic performance of the experimental group students has also significantly improved, such as improving exam scores and increasing interest in learning.
Conclusions
The research results indicate that teaching reform has a positive impact on students’ attention deficit. Improving teaching methods and increasing interaction and collaborative learning can help improve students’ concentration and attention regulation abilities.
Acknowledgement
Key Education Reform Project of Hainan Provincial Department of Education (No. Hnjg2022ZD-4220); High-level Talents Project of Hainan Provincial Natural Science Foundation (No. 621RC602); Major Special Project of Sanya University (No. USY22XK-04); Key Research and Development Project of Hainan Province (No. ZDYF2023GXJS007); School-level Project of Sanya University (No. USYYB22-07).
This chapter uncovers efforts made by village and rural cadres in the immediate post-Mao era to reverse wrongful convictions adjudicated during the Socialist Education Movement (SEM). Drawing on previously unexamined materials, including the personal dossiers of rural cadres in eastern Hebei, it traces the decision-making and policy processes behind how ordinary individuals reexamined cases involving two types of alleged wrongdoings perpetuated by cadres: corruption and extramarital relationships. The chapter highlights the two processes that constituted the reexamination: (1) the implementation of limited transitional justice as the rebuilding of political-legal institutions through the formal mechanisms of the state; and (2) the informal, social processes of interpersonal reconciliation outside the purview of the state. Both dynamics contributed to helping locals come to terms with the complicated legacies of the SEM.
The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis.
Methods
The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12–17 years old; 411 early-middle adults, 18–54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively.
Results
We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs.
Conclusions
To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.
The three-dimensional flow over a low-aspect-ratio (low-$A\!R$) trapezoidal plate is investigated experimentally with a focus on how the tip effects impact the structure and dynamics of the separation bubble. The chord-based Reynolds number is $5800$, and the angle of attack varies from $4^\circ$ to $10^\circ$. Once the flow separates, the separation bubble emerges and features a swallow-tailed structure that shrinks near the midspan, which is first found for the flows over low-$A\!R$ plates. This structure develops into the conventional single-tailed structure as the angle of attack increases. Moreover, the vortex shedding within the swallow-tailed separation bubble is restored from multiple asynchronously measured local velocity fields. It is revealed that the leading-edge vortex undergoes the novel transformation from a C-shape vortex into an M-shape vortex. This vortex transformation stems from the mass transport of the near-wall spanwise flow, which affects the fluid motion on the windward side of the C-shape vortex head, strengthening and accelerating the vortex head. The strengthened vortex head facilitates the entrainment of high-momentum fluid from the outer flow. This is responsible for the formation of the swallow-tailed structure. These findings help to fill the gaps left by the downwash at low angles of attack for low-$A\!R$ wings, and are of value in improving the cruising and gliding performance of micro-air vehicles.
The carbonate-hosted Pb–Zn deposits in the Sichuan–Yunnan–Guizhou (SYG) triangle region are important Indosinian deposits in South China. The Tianbaoshan deposit is a typical large Pb–Zn deposit in the SYG area and occurs as pipe-like type, hosted by Sinian dolostone. It contains ∼26 Mt Zn–Pb ore (7.76–10.09 % Zn, 1.28–1.50 % Pb and 93.6 g t−1 Ag) and >0.1 Mt Cu ore (2.55 % Cu). In this study, the detailed mineral textures, mineral chemical and sulphur isotopic compositions of the various sulphides have been analysed to constrain the abnormal enrichment mechanism and mineralization relationship. Four mineralization stages have been recognized: Stage 1, minor early pyrite (Py1) with relics and infill of intergranular dolomite or quartz grains; Stage 2, Cu mineralization with coarse-grained, elliptical crystal chalcopyrite (Cp1); (3) Stage 3, Zn mineralization with dark fine-grained sphalerite (Sph1) and light coarse-grained sphalerite (Sph2); and (4) Stage 4, as represented by a quartz–calcite assemblage with galena, minor pyrite (Py2) and chalcopyrite (Cp2). The petrography of the sulphide minerals (Py1, Cp1, Sph1 and Sph2) demonstrates a mutual inclusion relationship. The nature of this relationship from core to rim and their similar sulphur isotope values (5.5–8.3 ‰) indicates a single sulphur source, suggesting that the different mineralization types are the result of different stages of a continuous hydrothermal system. Sphalerite geothermometer study suggests that sphalerite in the Tianbaoshan deposit formed in a low-temperature (<200 °C) hydrothermal system. The low concentrations of Mn and In, low In/Ge ratios and high Fe/Cd ratios in the sphalerite are consistent with those of Mississippi Valley-type (MVT) deposits, but different from those of magmatism-related deposits (e.g. epithermal, skarn and VMS deposits). The positive δ34S values for Py1 (5.1–7.9 ‰), Cp1 (5.1–7.2 ‰), Sph1 (4.7–7.4 ‰), Sph2 (3.9–8.7 ‰), Py2 (4.4–9.3 ‰) and Cp2 (5.0–6.8 ‰) indicate a sulphur source from thermochemical reduction of coeval seawater sulphate. Widely developed dissolved textures (caverns and breccias) with massive sulphide infillings and deformed host rock remnants suggest that replacement of host dolostones by ore fluids was volumetrically significant and the ore formed nearly simultaneously with the cavities. The Tianbaoshan deposit is a typical MVT deposit, which resulted from mixing of a H2S-rich fluid and a metal-rich fluid, with thermochemical sulphate reduction occurring before ore precipitation rather than during ore precipitation.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Sporadic clusters of healthcare-associated coronavirus disease 2019 (COVID-19) occurred despite intense rostered routine surveillance and a highly vaccinated healthcare worker (HCW) population, during a community surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) B.1.617.2 δ (delta) variant. Genomic analysis facilitated timely cluster detection and uncovered additional linkages via HCWs moving between clinical areas and among HCWs sharing a common lunch area, enabling early intervention.
Demodex infestation and density changes remain one of the main challenges in some clinical settings. Tumour necrosis factor-α (TNF-α) inhibitors have been recommended as a first-line treatment for ankylosing spondylitis (AS). However, there have been no studies investigating the impact of TNF-α inhibitor adalimumab on changes in the Demodex density in patients with AS. The aim of this study was to investigate Demodex density changes before and after adalimumab treatment and analyse the relationship between the Demodex density and clinical characteristics in AS. It was found that the Demodex density was positively correlated with age and C-reactive protein levels and the number of Demodex mites could increase after adalimumab treatment in AS.
Recognition of obstacle type based on visual sensors is important for navigation by unmanned surface vehicles (USV), including path planning, obstacle avoidance, and reactive control. Conventional detection techniques may fail to distinguish obstacles that are similar in visual appearance in a cluttered environment. This work proposes a novel obstacle type recognition approach that combines a dilated operator with the deep-level features map of ResNet50 for autonomous navigation. First, visual images are collected and annotated from various different scenarios for USV test navigation. Second, the deep learning model, based on a dilated convolutional neural network, is set and trained. Dilated convolution allows the whole network to learn deep features with increased receptive field and further improves the performance of obstacle type recognition. Third, a series of evaluation parameters are utilised to evaluate the obtained model, such as the mean average precision (mAP), missing rate and detection speed. Finally, some experiments are designed to verify the accuracy of the proposed approach using visual images in a cluttered environment. Experimental results demonstrate that the dilated convolutional neural network obtains better recognition performance than the other methods, with an mAP of 88%.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.
The late Palaeozoic Yong’an–Meizhou depression belt is an important iron (Fe) and polymetallic metallogenic belt in southern China. It has undergone a transformation from Tethys to the circum-Pacific tectonic domain. The Luoyang deposit is one of the typical Fe skarn deposits in the Yong’an–Meizhou depression belt of eastern China. Garnet is a characteristic mineral in the deposit. Two generations of garnets are detected in the deposit based on their textural characteristics and trace-element contents, and are represented by Fe-enriched andradite. The first generation of garnets (Grt1) have two types of garnets (Grt1-A and Grt1-B). Type A garnets of the first generation (Grt1-A) (Adr80-88) replaced by massive diopside-magnetite assemblage exhibit distinct oscillatory zonings and display patterns of enriched light rare earth elements (LREE) to weak heavy rare earth elements (HREE), with weak negative to positive Eu anomalies, and highest U, ΣREE and Sn contents. Type B garnets of the first generation (Grt1-B) are irregular zones (Adr94-96) coexisting with magnetite, in which Grt1-A is generally dissolved, and have obviously LREE-enriched and HREE-depleted patterns, with weak negative to positive Eu anomalies, and moderate U, ΣREE and Zn contents. Garnets of the second generation (Grt2) (Adr96-99) that replaced massive magnetite together with sphalerite show unzoned patterns, with a flat REE pattern and pronounced negative Eu anomalies as well as contents of lowest U and ΣREE, and highest W. The substitution of REEs in garnets occurs as [X2+]VIII –1[REE3+]VIII +1[Si4+]IV –1[Z3+]IV +1in an Al-enriched environment. Luoyang hydrothermal fluids shifted from reducing conditions with relatively high-U and -ΣREE characteristics to oxidizing conditions with relatively low-U and -ΣREE characteristics. The reduced siderophile elements and increased fO2 in fluid during Grt1-B formation caused magnetite mineralization and reduced Zn contents during Grt2 formation, causing the deposition of sphalerite. All garnets formed from magmatic fluid and were controlled by infiltrative metasomatism in an opened system.
Cost-effective sampling design is a problem of major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time-consuming. In this article, we investigate ratio-type estimators of the population mean of the study variable, involving either the first or the third quartile of the auxiliary variable, using ranked set sampling (RSS) and extreme ranked set sampling (ERSS) schemes. The properties of the estimators are obtained. The estimators in RSS and ERSS are compared to their counterparts in simple random sampling (SRS) for normal data. The numerical results show that the estimators in RSS and ERSS are significantly more efficient than their counterparts in SRS.
Various treatments are found to be moderately effective in managing Demodex-related diseases except tea tree oil (TTO) and terpinen-4-ol (T4O), which showed superior miticidal and anti-inflammatory effects in numerous clinical studies. Their possible effects include lowering mite counts, relieving Demodex-related symptoms, and modulating the immune system. This review summarizes the current clinical topical and oral treatments in human demodicosis, their possible mechanisms of action, side-effects and resistance in treating this condition. TTO (especially T4O) is found to be the most effective followed by metronidazole, ivermectin and permethrin in managing the disease. This is because TTO has anti-parasitic, anti-bacterial, anti-fungal, anti-inflammatory and wound-healing effects. Furthermore, nanoTTO can even release its contents into fungus and Pseudomonas biofilms. Combinations of different treatments are occasionally needed for refractory cases, especially for individuals with underlying genetic predisposal or are immuno-compromised. Although the current treatments show efficacy in controlling the Demodex mite population and the related symptoms, further research needs to be focused on the efficacy and drug delivery technology in order to develop alternative treatments with better side-effects profiles, less toxicity, lower risk of resistance and are more cost-effective.
This study aimed to evaluate associations between toxoplasmosis and psychiatric disorders in Taiwan based on the National Health Insurance Research Database, Taiwan (1997–2013). Patients newly diagnosed with toxoplasmosis formed the case group (n = 259), and the control group included propensity-score matched patients without toxoplasmosis (n = 1036). The primary outcome was incidence of psychiatric disorders. Cox proportional hazards regression and stratified analyses were performed to examine risk of developing specific psychiatric disorders between patients with and without toxoplasmosis. Patients with toxoplasmosis had significantly higher incidence of psychiatric disorders than those without toxoplasmosis (P = 0.016). A significant difference was found in numbers of psychiatric disorders between the two groups during 14 years of follow-up (log-rank P < 0.001). Those with toxoplasmosis had significantly higher risk of bipolar disorder [adjusted hazard ratio (aHR = 3.60, 95% confidence interval (CI) = 2.07, 7.26), depression (aHR = 4.94, 95% CI = 2.15, 11.80) and anxiety (aHR = 5.36, 95% CI = 2.98, 25.88), but no significant between-group differences were found for schizophrenia and other psychiatric disorders. In conclusion, the present nationwide population-based analysis revealed that Toxoplasma gondii infection in Taiwan significantly increases the risk for developing bipolar disorder, depression and anxiety, but not for schizophrenia and other psychiatric disorders.
Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.