We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Excess salt consumption is causally linked with stomach cancer, and salt intake among adults in Vietnam is about twice the recommended levels. The aim of this study was to quantify the future burden of stomach cancer that could be avoided from population-wide salt reduction in Vietnam.
Design:
A dynamic simulation model was developed to quantify the impacts of achieving the 2018 National Vietnam Health Program (8 g/d by 2025 and 7 g/d by 2030) and the WHO (5 g/d) salt reduction policy targets. Data on salt consumption were obtained from the Vietnam 2015 WHO STEPS survey. Health outcomes were estimated over 6-year (2019–2025), 11-year (2019–2030) and lifetime horizons. We conducted one-way and probabilistic sensitivity analyses.
Setting:
Vietnam.
Participants:
All adults aged ≥ 25 years (61 million people, 48·4 % men) alive in 2019.
Results:
Achieving the 2025 and 2030 national salt targets could result in 3400 and 7200 fewer incident cases of stomach cancer, respectively, and avert 1900 and 4800 stomach cancer deaths, respectively. Achieving the WHO target by 2030 could prevent 8400 incident cases and 5900 deaths from stomach cancer. Over the lifespan, this translated to 344 660 (8 g/d), 411 060 (7 g/d) and 493 633 (5 g/d) health-adjusted life years gained, respectively.
Conclusions:
A sizeable burden of stomach cancer could be avoided, with gains in healthy life years if national and WHO salt targets were attained. Our findings provide impetus for policy makers in Vietnam and Asia to intensify salt reduction strategies to combat stomach cancer and mitigate pressure on the health systems.
To evaluate what is known about the relative health impacts, in terms of nutrient intake and health outcomes, of diets with reduced greenhouse gas emissions (GHGE).
Design
We systematically reviewed the results of published studies that link GHGE of dietary patterns to nutritional content or associated consequences for health.
Setting
We included studies published in English in peer-reviewed journals that included data on actual and modelled diets and enabled a matched comparison of GHGE with nutrient composition and/or health outcomes.
Subjects
Studies included used data from subjects from the general population, who had taken part in dietary surveys or prospective cohort studies.
Results
We identified sixteen eligible studies, with data on 100 dietary patterns. We present the results as dietary links between GHGE reduction and impact on nutrients to limit (n 151), micronutrient content (n 158) and health outcomes (n 25). The results were highly heterogeneous. Across all measures of ‘healthiness’, 64 % (n 214) of dietary links show that reduced GHGE from diets were associated with worse health indicators. However, some trends emerged. In particular, reduced saturated fat and salt are often associated with reduced GHGE in diets that are low in animal products (57/84). Yet these diets are also often high in sugar (38/55) and low in essential micronutrients (129/158).
Conclusions
Dietary scenarios that have lower GHGE compared with average consumption patterns may not result in improvements in nutritional quality or health outcomes. Dietary recommendations for reduced GHGE must also address sugar consumption and micronutrient intake.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.