We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The present study aimed to explore the association between dietary patterns in abdominal obesity obtained by reduced-rank regression (RRR) with visceral fat index (VFI) as a dependent variable and dyslipidemia in rural adults in Henan, China. A total of 29538 people aged 18–79 were selected from the Henan Rural Cohort Study. RRR analysis was used to identify dietary patterns; logistic regression analysis and restricted cubic spline regression models were applied to analyze the association between dietary patterns in abdominal obesity and dyslipidemia. VFI was used as a mediator to estimate the mediation effect. The dietary pattern in abdominal obesity was characterized by high carbohydrate and red meat intake and low consumption of fresh fruits, vegetables, milk, etc. After full adjustment, the highest quartile of dietary pattern scores was significantly associated with an increased risk of dyslipidemia (OR: 1·33, 95 % CI 1·23–1·44, Ptrend < 0·001), there was a non-linear dose–response relationship between them (Poverall-association < 0·001, Pnon-lin-association = 0·022). The result was similar in dose-response between the dietary pattern scores and VFI. The indirect effect partially mediated by VFI was significant (OR: 1·07, 95 % CI 1·06–1·08). VIF explained approximately 53·3 % of odds of dyslipidemia related to the dietary pattern. Abdominal obesity dietary pattern scores positively affected VFI and dyslipidemia; there was a dose-response in both relationships. Dyslipidemia progression increased with higher abdominal obesity dietary pattern scores. In addition, VFI played a partial mediating role in relationship between abdominal obesity dietary pattern and dyslipidemia.
The prediction of prognosis is an important part of management in hepatitis B virus (HBV)-related decompensated cirrhosis patients with high long-term mortality. Lactate is a known predictor of outcome in critically ill patients. The aim of this study was to assess the prognostic value of lactate in HBV-related decompensated cirrhosis patients. We performed a single-centre, observational, retrospective study of 405 HBV-related decompensated cirrhosis patients. Individuals were evaluated within 24 h after admission and the primary outcome was evaluated at 6-months. Multivariable analyses were used to determine whether lactate was independently associated with the prognosis of HBV-related decompensated cirrhosis patients. The area under the ROC (AUROC) was calculated to assess the predictive accuracy compared with existing scores. Serum lactate level was significantly higher in non-surviving patients than in surviving patients. Multivariable analyses demonstrated that lactate was an independent risk factor of 6-months mortality (odds ratio: 2.076, P < 0.001). Receiver operating characteristic (ROC) curves were drawn to evaluate the discriminative ability of lactate for 6-months mortality (AUROC: 0.716, P < 0.001). Based on our patient cohort, the new scores (Model For End-Stage Liver Disease (MELD) + lactate score, Child–Pugh + lactate score) had good accuracy for predicting 6-months mortality (AUROC = 0.769, P < 0.001; AUROC = 0.766, P < 0.001). Additionally, the performance of the new scores was superior to those of existing scores (all P < 0.001). Serum lactate at admission may be useful for predicting 6-months mortality in HBV-related decompensated cirrhosis patients, and the predictive value of the MELD score and Child–Pugh score was improved by adjusting lactate. Serum lactate should be part of the rapid diagnosis and initiation of therapy to improve clinical outcome.
A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.
Teenagers are important carriers of Neisseria meningitidis, which is a leading cause of invasive meningococcal disease. In China, the carriage rate and risk factors among teenagers are unclear. The present study presents a retrospective analysis of epidemiological data for N. meningitidis carriage from 2013 to 2017 in Suizhou city, China. The carriage rates were 3.26%, 2.22%, 3.33%, 3.53% and 9.88% for 2013, 2014, 2015, 2016 and 2017, respectively. From 2014 to 2017, the carriage rate in the 15- to 19-year-old age group (teenagers) was the highest and significantly higher than that in remain age groups. Subsequently, a larger scale survey (December 2017) for carriage rate and relative risk factors (population density, time spent in the classroom, gender and antibiotics use) were investigated on the teenagers (15- to 19-year-old age) at the same school. The carriage rate was still high at 33.48% (223/663) and varied greatly from 6.56% to 52.94% in a different class. Population density of the classroom was found to be a significant risk factor for carriage, and 1.4 persons/m2 is recommended as the maximum classroom density. Further, higher male gender ratio and more time spent in the classroom were also significantly associated with higher carriage. Finally, antibiotic use was associated with a significantly lower carriage rate. All the results imply that attention should be paid to the teenagers and various measures can be taken to reduce the N. meningitidis carriage, to prevent and control the outbreak of IMD.
The present study investigated the association between fibre degradation and the concentration of dissolved molecular hydrogen (H2) in the rumen. Napier grass (NG) silage and corn stover (CS) silage were compared as forages with contrasting structures and degradation patterns. In the first experiment, CS silage had greater 48-h DM, neutral-detergent fibre (NDF) and acid-detergent fibre degradation, and total gas and methane (CH4) volumes, and lower 48-h H2 volume than NG silage in 48-h in vitro incubations. In the second experiment, twenty-four growing beef bulls were fed diets including 55 % (DM basis) NG or CS silages. Bulls fed the CS diet had greater DM intake (DMI), average daily gain, total-tract digestibility of OM and NDF, ruminal dissolved methane (dCH4) concentration and gene copies of protozoa, methanogens, Ruminococcus albus and R. flavefaciens, and had lower ruminal dH2 concentration, and molar proportions of valerate and isovalerate, in comparison with those fed the NG diet. There was a negative correlation between dH2 concentration and NDF digestibility in bulls fed the CS diet, and a lack of relationship between dH2 concentration and NDF digestibility with the NG diet. In summary, the fibre of CS silage was more easily degraded by rumen microorganisms than that of NG silage. Increased dCH4 concentration with the CS diet presumably led to the decreased ruminal dH2 concentration, which may be helpful for fibre degradation and growth of fibrolytic micro-organisms in the rumen.
Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.
Chlamydia spp. are a group of obligate intracellular pathogens causing a number of diseases in animals and humans. Avian chlamydiosis (AC), caused by Chlamydia psittaci (C. psittaci) as well as new emerging C. avium, C. gallinacea and C. ibidis, have been described in nearly 500 avian species worldwidely. The Crested Ibis (Nipponia nippon) is a world endangered avian species with limited population and vulnerable for various infections. To get a better understanding of the prevalence of Chlamydia spp. in the endangered Crested Ibis, faecal samples were collected and analysed. The results confirmed that 20.20% (20/99) of the faecal samples were positive for Chlamydiaceae and were identified as C. ibidis with co-existence of C. psittaci in one of the 20 positive samples. In addition, ompA sequence of C. psittaci obtained in this study was classified into the provisional genotype Matt116, while that of C. ibidis showed high genetic diversity, sharing only 77% identity with C. ibidis reference strain 10-1398/6. We report for the first time the presence of C. ibidis and C. psittaci in the Crested Ibis, which may indicate a potential threat to the endangered birds and should be aware of the future protection practice.
In this study, wideband bandpass power divider with good out-of-band performance is proposed. Two bandpass filters (BPFs) are utilized to substitute the quarter-wavelength transmission line in conventional Wilkinson power divider. A resistor is specially arranged between two BPFs for a good isolation. Four transmission zeros (TZs) are found to be distributed in the lower and upper stopband of the power divider. Moreover, the locations of two TZs can be shifted by tuning the impedance ratio of the center-loaded open stub, which is propitious to improve the frequency selectivity. Even- and odd-mode methods are applied to analyze the proposed power divider and closed-form design formulas are obtained. Finally, two prototype power dividers with measured rejection level in the upper stopband larger than 29.1 and 32 dB till to 2.7f0 and 2.69f0, respectively, are designed and fabricated to testify the proposed design concept. Good agreement between the simulated and measured results is observed, validating the validity of the proposed design principle.
SG-III laser facility is now the largest laser driver for inertial confinement fusion research in China. The whole laser facility can deliver 180 kJ energy and 60 TW power ultraviolet laser onto target, with power balance better than 10%. We review the laser system and introduce the SG-III laser performance here.
Many studies have suggested that folate-related one-carbon metabolism-related nutrients may play a role in certain cancer risks, but few studies have assessed their associations with the risk for nasopharyngeal carcinoma (NPC). In this study, we investigated the association between four folate-related one-carbon metabolism-related nutrients (folate, vitamin B6, vitamin B12 and methionine) and NPC risk in Chinese adults. A total of 600 patients newly diagnosed (within 3 months) with NPC were individually matched with 600 hospital-based controls by age, sex and household type (urban v. rural). Folate, vitamin B6, vitamin B12 and methionine intakes were measured using a validated seventy-eight-item FFQ. A higher dietary folate or vitamin B6 intake was associated with a lower NPC risk after adjusting for potential confounders. The adjusted OR of NPC for quartiles 2–4 (v. 1) were 0·66 (95 % CI 0·48, 0·91), 0·52 (95 % CI 0·37, 0·74) and 0·34 (95 % CI 0·23, 0·50) (Ptrend<0·001) for folate and 0·72 (95 % CI 0·52, 1·00), 0·55 (95 % CI 0·39, 0·78) and 0·44 (95 % CI 0·30, 0·63) (Ptrend<0·001) for vitamin B6. No significant association with NPC risk was observed for dietary vitamin B12 or methionine intake. The risk for NPC with dietary folate intake was more evident in the participants who were not exposed to toxic substances than in those who were exposed (Pinteraction=0·014). This study suggests that dietary folate and vitamin B6 may be protective for NPC in a high-risk population.
The development of high performance Al–Cu based alloys generally depends on the strict control of the Fe content. However, with the increasing use of recycled aluminum alloys, it is necessary to increase the tolerance for the Fe content in Al–Cu cast alloys for the purpose of low cost, energy saving, and environment protection. In this study, the formation of Fe-rich intermetallics and their effect on the tensile properties of squeeze-cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with an Fe content of up to 1.5 wt% have been investigated. The full formation sequence of squeeze-cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents has been established. The results were also compared with the corresponding results obtained for Al–5.0Cu–0.6Mn alloys prepared by gravity die casting. It is found that the Fe-rich intermetallic compounds mainly consist of α-Fe and β-Fe in alloys with a low Fe content, changing into Al6(FeMn) and Al3(FeMn) for alloys with a high Fe content. The applied pressure promotes the formation of the Fe-rich intermetallics α-Fe/Al6(FeMn) and prevents the precipitation of needle-like β-Fe/Al3(FeMn). The elongation of the alloys gradually decreases with the Fe content, and a maximum value for both the ultimate mechanical strength and the yield strength was found for the alloys with 0.5 wt% Fe. The tensile properties of alloys with a different Fe content significantly increased as the applied pressure was increased from 0 to 75 MPa, especially the elongation.
The distribution of the Critically Endangered tree Manglietia longipedunculata, of which there are only 11 known wild individuals, is restricted to the Nankunshan Nature Reserve in South China. The species is threatened with extinction because of its small number of individuals and the impediments to its reproduction (a combination of protogyny, a short period of stigma receptivity, and a lack of efficient pollinators). To reduce the risk of extinction we conducted two conservation translocation trials: one to augment the sole extant population, and the other 202 km north of the current range. The latter trial was a conservation introduction in which the goals were to increase the population and to buffer against the effects of climate change. We used emerged and grafted seedlings as translocation materials. We compared the survival, growth, and eco-physiological properties of emerged and grafted seedlings at the two sites. The survival rate and growth were higher for grafted seedlings than for emerged seedlings at both sites. Eco-physiological data indicated that grafted seedlings at both sites were as efficient or more so in light and water usage than wild individuals, whereas emerged seedlings were less efficient. Grafted seedlings attained the flowering stage sooner than emerged seedlings. Our study suggests that grafting can facilitate the augmentation and establishment of new populations of M. longipedunculata and perhaps of new populations of other threatened species facing reproductive difficulties and climate change.
Early identification of patients with bipolar disorder during their first depressive episode is beneficial to the outcome of the disorder and treatment, but traditionally this has been a great challenge to clinicians. Recently, brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the pathophysiology of bipolar disorder and major depressive disorder (MDD), but it is not clear whether BDNF levels can be used to predict bipolar disorder among patients in their first major depressive episode.
Aims
To explore whether BDNF levels can differentiate between MDD and bipolar disorder in the first depressive episode.
Method
A total of 203 patients with a first major depressive episode as well as 167 healthy controls were recruited. After 3 years of bi-annual follow-up, 164 patients with a major depressive episode completed the study, and of these, 21 were identified as having bipolar disorder and 143 patients were diagnosed as having MDD. BDNF gene expression and plasma levels at baseline were compared among the bipolar disorder, MDD and healthy control groups. Logistic regression and decision tree methods were applied to determine the best model for predicting bipolar disorder at the first depressive episode.
Results
At baseline, patients in the bipolar disorder and MDD groups showed lower BDNF mRNA levels (P<0.001 and P = 0.02 respectively) and plasma levels (P = 0.002 and P = 0.01 respectively) compared with healthy controls. Similarly, BDNF levels in the bipolar disorder group were lower than those in the MDD group. These results showed that the best model for predicting bipolar disorder during a first depressive episode was a combination of BDNF mRNA levels with plasma BDNF levels (receiver operating characteristics (ROC) = 0.80, logistic regression; ROC = 0.84, decision tree).
Conclusions
Our findings suggest that BDNF levels may serve as a potential differential diagnostic biomarker for bipolar disorder in a patient's first depressive episode.
This paper studies the influence of inert gas additions He, Ar, Kr and Xe on breakdown voltage within dielectric barrier discharge reactor with oxygen feed gas. The density-normalized effective ionization coefficients αeff/N are calculated for inert gas/O2 mixtures, the critical reduced field E/Ncr is obtained where the electron ionization exactly balances the attachment. Adding inert gases would lead to the decreasing critical reduced field strength E/Ncr due to the enhancement of effective ionization coefficient. In addition, inert gas additions have shown to reduce the breakdown voltage. Moreover the numerical breakdown voltage values and the experimental data are plotted for the sake of comparison and results show that calculated results are in agreement with the experimental values. Parametric study offers substantial insight in plasma physics, as well as in ozone generation applications.
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings. In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense, and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
Vanadium oxides thin films with variable oxidation states have attracted great attention due to their unique electrical, optical properties and many important applications in microelectronics, infrared optical devices, and energy harvest systems. However, to fabricate vanadium oxide thin films with controllable phases and desired transport properties is still a challenge by using a chemical solution deposition (CSD) technique. In this paper, we report that vanadium oxide thin films with well controlled phases such as rhombohedral V2O3 and monoclinic VO2 could be synthesized on Al2O3 (0001) substrates using a CSD technique ---- polymer assisted deposition (PAD). Both V2O3 and VO2 thin films can be well controlled with good epitaxial quality by optimizing the fabrication parameters. The electrical resistivity changes 3∼4 orders of magnitude at metal insulator transition for both epitaxial V2O3 and VO2 thin films. The correlation between the physical properties and the microstructures of the films will be discussed.
Ruthenium dioxide (RuO2) was uniformly modified on TiO2 porous thin film by impregnation of Ru-contained dye on the film followed by sintering it at 450 °C to burn off organic matters and form ruthenium oxide, which is named as impregnation method. The homogenous modification of metal oxide inside porous thin film can be realized by the impregnation method, and the modification amount of RuO2 can be easily adjusted by the iteration numbers of impregnation and sintering. Appropriate amount of uniformly modified RuO2 was found to obviously enhance photocatalytic performance of TiO2 to degrade eosin Y. The photocatalysis enhancement was attributed to the shallow hole traps on the surface of nanoparticles formed by RuO2, and these traps can retard recombination of hole with electron.