We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The essence of sub-critical transition of oscillatory boundary-layer flows is the non-modal growth of finite-amplitude disturbances. The current understanding of the mechanisms of the orderly and bypass transitions of oscillatory boundary-layer flows is limited. The present study adopts optimisation approaches to predict the maximum energy amplification of two- and three-dimensional perturbations in response to the optimal initial disturbance with or without external forcing. A series of direct numerical simulations are also performed to compare with the results obtained from the stability analyses. In particular, the optimal initial perturbation similar to a Tollmien–Schlichting (T–S) wave yields the largest transient growth under the combined effects of the Orr mechanism and inflectional point instability. With a considerable level of two-dimensional disturbance, the vortex tube nonlinearly develops from the T–S-like wave, and then either deforms into a $\varLambda$-vortex in the near-wall region or rolls up to the free shear region. The further burst of turbulence can follow the first pathway as K-type transition or the second one as vortex tube breakdown due to the elliptical instability. Additionally, non-modal growth can initiate the inception of streaky structures by favourable three-dimensional initial perturbations and/or forcing. The secondary instabilities responsible for the streak breakdown are classified as the varicose (symmetric) and sinuous (anti-symmetric) modes. Under a sufficiently high level of three-dimensional disturbance, the bypass transition is predominantly characterised by the formation of the sinuous mode and turbulent spots, which leads to the suppression of inflection point instability.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.
Blood oxygen is an essential component for numerous biological processes of mammalian animals. Milk production of ruminants largely relies on the supply of nutrients, such as glucose, amino acids and fatty acids. To define the regulatory role of blood oxygen availability in regard to milk production, seventy-five healthy Guanzhong dairy goats with similar body weight, days in milk and parities were selected. For each animal, milk yield was recorded and milk sample was collected to determine compositions. Milk vein blood was collected to determine parameters including blood gas, physio-biochemistry and haematology. Another blood sample was prepared for transcriptome and RT-qPCR. Results showed that both pressure of oxygen (pO2) in the milk vein (positively) and numbers of neutrophils in mammary vein (negatively) were associated with milk yield of the animals. To learn the role of pO2 in blood cell functionality, twelve animals (six with higher yield (H-group) and six with lower yield (L-group)) from seventy-five goats were selected. Compared with animals in L-group, goats in H-group were higher in pO2 but lower in pCO2, lactate, lactate dehydrogenase activity and neutrophil abundance in milk vein, compared with L-group. The blood transcriptome analysis suggested that compared with L-group, animals in H-group were depressed in functionality including neutrophil activation and metabolic pathways including glycolysis, NF-κB and HIF-1. Our result revealed that lower milk production could be associated with neutrophil activation responding to low pO2 in the mammary vein. In the meantime, we highlighted the potential importance of blood oxygen as a milk yield regulator.
Under global warming, many glaciers worldwide are receding. However, recent studies have suggested the extension of the Karakoram Anomaly, a region of anomalous glacier mass gain, into the western Kunlun and eastern Pamir mountains. However, the eastern limit of this anomaly in the Kunlun Mountains is unclear. This study, using changes in glacier area and surface elevation, estimates the eastern limit of the Kunlun-Pamir-Karakoram anomaly at ~85°E. Over the past 50 years, glaciers west of 85°E in the Kunlun Mountains decreased in area from 8401 to 7945 km2 at a rate of −0.12 ± 0.07% a−1, showed a reduction in the rate of retreat through time and have recently gained mass, with surface elevation changes of 0.15 ± 0.35 m a−1 over the period of 2000–2013. Glaciers east of 85°E have experienced greater rates of area change (−61 ± 12 km2 and −0.43 ± 0.13% a−1) over the past 50 years, accelerated area loss in recent years and elevation change rate of −0.51 ± 0.18 m a−1 between 2000 and 2013. These patterns of elevation and area change are consistent with regional increases in summer temperature in the eastern Kunlun Mountains and slight cooling in the western Kunlun Mountains.
A proportion of patients with bipolar disorder (BD) manifests with only unipolar mania (UM). This study examined relevant clinical features and psychosocial characteristics in UM compared with depressive-manic (D-M) subgroups. Moreover, comorbidity patterns of physical conditions and psychiatric disorders were evaluated between the UM and D-M groups.
Methods
This clinical retrospective study (N = 1015) analyzed cases with an average of 10 years of illness duration and a nationwide population-based cohort (N = 8343) followed up for 10 years in the Taiwanese population. UM was defined as patients who did not experience depressive episodes and were not prescribed adequate antidepressant treatment during the disease course of BD. Logistic regression models adjusted for relevant covariates were used to evaluate the characteristics and lifetime comorbidities in the two groups.
Results
The proportion of UM ranged from 12.91% to 14.87% in the two datasets. Compared with the D-M group, the UM group had more psychotic symptoms, fewer suicidal behaviors, a higher proportion of morningness chronotype, better sleep quality, higher extraversion, lower neuroticism, and less harm avoidance personality traits. Substantially different lifetime comorbidity patterns were observed between the two groups.
Conclusions
Patients with UM exhibited distinct clinical and psychosocial features compared with patients with the D-M subtype. In particular, a higher risk of comorbid cardiovascular diseases and anxiety disorders is apparent in patients with D-M. Further studies are warranted to investigate the underlying mechanisms for diverse presentations in subgroups of BDs.
For individual cultures, findings on regulating embryo density by changing the microdrop volume are contradictory. The aim of this study was to investigate the relationship between embryo density and the developmental outcome of day 3 embryos after adjusting covariates. In total, 1196 embryos from 206 couples who had undergone in vitro fertilization treatment were analyzed retrospectively. Three embryo densities were used routinely, i.e. one embryo in a drop (30 μl/embryo), two embryos in a drop (15 μl/embryo) and three embryos in a drop (10 μl/embryo). Embryo quality on day 3 was evaluated, both the cell number of day 3 embryos and the proportion of successful implantations served as endpoints. Maternal age, paternal age, antral follicles and level of anti-Müllerian hormone, type of infertility, controlled ovarian stimulation protocol, length of stimulation, number of retrieved oocytes, number of zygotes (two pronuclei) and insemination type were covariates and adjusted. After adjusting fully for all covariates, the cell number of day 3 embryos was significantly increased by 0.40 (95% CI 0.00, 0.79; P = 0.048) and 0.78 (95% CI 0.02, 1.54; P = 0.044) in the 15 μl/embryo and 10 μl/embryo group separately, compared with the 30 μl/embryo group. The proportions of implanted embryos were 42.1%, 48.7% and 0.0% in the 30 μl/embryo, 15 μl/embryo and 10 μl/embryo groups respectively. There was no statistical significance (P = 0.22) between the 30 μl/embryo group and the 15 μl/embryo group. After adjusting for confounders that were significant in univariate analysis, embryo density was still not associated with day 3 embryo implantation potential (P > 0.05). In a 30-μl microdrop, culturing embryos with an embryo density of both 15 and 10 μl/embryo increased the cell number of day 3 embryos, which did not benefit embryo implanting potential, compared with individual culture of 30 μl/embryo.
For the safety problems caused by the limited landing space of the deck during the arresting process of the carrier-based aircraft, a dynamic model of the carrier-based aircraft’s landing and arresting is built. Based on the batch simulation method, the lateral dynamics safety envelope of the aircraft during the arresting was defined, and the dynamic response of the key points in the envelope during the arresting process was investigated. Subsequently, the influence of engine thrust and aircraft quality on the arresting safety envelope was studied based on reasonable safety evaluation indicators, and the safety status envelope of the deck arresting was given. Then, the particular Hamilton-Jacobi partial differential equation is used to obtain the lateral dynamics safety envelope of the carrier-based aircraft in the process of landing and arresting by backward inversion. Results indicate that engine thrust and landing quality have little effect on the yaw angle in the arresting safety boundary during the arresting. Additionally, with the engine thrust and landing quality increase, the maximum safe off-centre distance gradually decreases, and the safety boundary decreases accordingly. During the phase of landing glide, the engine thrust and quality have little effect on the maximum safe eccentric distance. When the engine thrust is increased by 40%, the maximum safe yaw angle is reduced from 0.3°, and the safety boundary is reduced by 4.2%. When the aircraftquality increases by 40%, the maximum safe yaw angle is reduced by 0.4°, and the safety boundary is reduced by 2.8%. The findings of this paper can provide framework for the research on theaircraft-to-carrier dynamic matching characteristics of the carrier-based system, and is of great significance to the research on improving the safety of the carrier-based aircraft landing arresting.
This survey examined and compared the disaster perception and preparedness of 2421 residents with and without chronic disease in Shenzhen, China.
Methods:
The participants were recruited and were asked to complete a survey in 2018.
Results:
Three types of disasters considered most likely to happen in Shenzhen were: typhoons (73.5% vs 74.9%), major transport accidents (61.5% vs 64.7%), and major fires (60.8% vs 63.0%). Only 5.9% and 5% of them, respectively, considered infectious diseases pandemics to be likely. There were significant differences between those with and without chronic disease in disaster preparedness, only a small percentage could be considered to have prepared for disaster (20.7% vs 14.5%). Logistic regression analyses showed that those aged 65 or older (odds ratio [OR] = 2.76), who had attained a Master’s degree or higher (OR = 2.0), and with chronic disease (OR = 1.38) were more prepared for disasters.
Conclusions:
Although participants with chronic disease were better prepared than those without, overall, Shenzhen residents were inadequately prepared for disasters and in need of public education.
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
We use circulant matrices and hyperelliptic curves over finite fields to study some arithmetic properties of certain determinants involving Legendre symbols and kth power residues.
We performed U–Pb dating of detrital zircons and conducted petrological and whole-rock geochemical analyses to assess the provenance of the Upper Triassic – Lower Jurassic clastic rocks in the southeastern margin of the South China Block. Detrital zircon U–Pb ages are mainly classified into age groups of 2000–1700, 900–700, 490–390 and 280–210 Ma, consistent with derivation from the Jiangnan orogenic belt, Nanling Belt, as well as Wuyi and Yunkai domains. Lower Jurassic samples yield a special main age population of 200–190 Ma, and these detrital zircon grains have low Th/U and Nb/Hf ratios and high Th/Nb and Hf/Th ratios, showing they are derived from a continental magmatic arc. However, the cross-correlation and likeness coefficients of kernel density estimates of Upper Triassic and Lower Jurassic sandstones are 0.8608 and 0.8403, indicating that their populations are highly similar. Since the tectonic setting is the key factor in controlling the relationship between source and sink, the stable supply of identical provenance suggests that the tectonic setting did not significantly change during Late Triassic – Early Jurassic time. Sandstone petrography, regional facies distribution and the detrital zircon age patterns all reflect a consistent tectonic setting for the South China Block during Late Triassic – Early Jurassic time. The Palaeo-Pacific subduction therefore did not control the tectonic evolution of the South China Block until after the Early Jurassic Epoch.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
Extensive magmatism in NE China, eastern Central Asian Orogenic Belt, has produced multi-stage granitic plutons and accompanying W mineralization. The Narenwula complex in the southwestern Great Xing’an Range provides important insights into the petrogenesis, geodynamic processes and relationship with W mineralization. The complex comprises granodiorites, monzogranites and granite porphyry. Mafic microgranular enclaves are common in the granodiorites, and have similar zircon U–Pb ages as their host rocks (258.5–253.9 Ma), whereas the W-bearing granitoids yield emplacement ages of 149.8–148.1 Ma. Permian granodiorites are I-type granites that are enriched in large-ion lithophile elements and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements. Both the mafic microgranular enclaves and granodiorites have nearly identical zircon Hf isotopic compositions. The results suggest that the mafic microgranular enclaves and granodiorites formed by the mixing of mafic and felsic magmas. W-bearing granitoids are highly fractionated A-type granites, enriched in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti and Eu. They have higher W concentrations and Rb/Sr ratios, and lower Nb/Ta, Zr/Hf and K/Rb ratios than the W-barren granodiorites. These data and negative ϵHf(t) values (–6.0 to –2.1) suggest that they were derived from the partial melting of ancient lower crust and subsequently underwent extreme fractional crystallization. Based on the regional geology, we propose that the granodiorites were generated in a volcanic arc setting related to the subduction of the Palaeo-Asian Ocean, whereas the W-bearing granitoids and associated deposits formed in a post-orogenic extensional setting controlled by the Mongol–Okhotsk Ocean and Palaeo-Pacific Ocean tectonic regimes.
Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.
As acute infectious pneumonia, the coronavirus disease-2019 (COVID-19) has created unique challenges for each nation and region. Both India and the United States (US) have experienced a second outbreak, resulting in a severe disease burden. The study aimed to develop optimal models to predict the daily new cases, in order to help to develop public health strategies. The autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models, ARIMA–GRNN hybrid model and exponential smoothing (ES) model were used to fit the daily new cases. The performances were evaluated by minimum mean absolute per cent error (MAPE). The predictive value with ARIMA (3, 1, 3) (1, 1, 1)14 model was closest to the actual value in India, while the ARIMA–GRNN presented a better performance in the US. According to the models, the number of daily new COVID-19 cases in India continued to decrease after 27 May 2021. In conclusion, the ARIMA model presented to be the best-fit model in forecasting daily COVID-19 new cases in India, and the ARIMA–GRNN hybrid model had the best prediction performance in the US. The appropriate model should be selected for different regions in predicting daily new cases. The results can shed light on understanding the trends of the outbreak and giving ideas of the epidemiological stage of these regions.
This study aimed to determine the risk factors for chronic diseases and to identify the potential influencing mechanisms from the perspectives of lifestyle and dietary factors. The findings could provide updated and innovative evidence for the prevention and control of chronic diseases.
Design:
A cross-sectional study.
Setting:
Shanghai, China.
Participants:
1005 adults from Yangpu district of Shanghai participated in the study, and responded to questions on dietary habits, lifestyle and health status.
Results:
Residents suffering from chronic diseases accounted for about 34·99 % of the respondents. Logistic regression analysis showed that age, diet quality, amount of exercise and tea drinking were related to chronic diseases. Age > 60 and overeating (Diet Balance Index total score > 0) had negative additive interaction on the occurrence of chronic disease, while overexercise (Physical Activity Index > 17·1) and tea drinking had negative multiplicative interaction and negative additive interaction on the occurrence of chronic disease. Diet quality, physical activity and tea drinking were incomplete mediators of the relationship between types of medical insurance residents participating in and chronic diseases.
Conclusions:
The residents in Yangpu District of Shanghai have a high prevalence of chronic diseases. Strengthening access of residents to health education and interventions to prevent chronic diseases and cultivating healthy eating and exercise habits of residents are crucial. The nutritional environment of the elderly population should be considered, and the reimbursement level of different types of medical insurance should be designed reasonably to improve the accessibility of medical and health services and reduce the risk of chronic diseases.
This study aimed to identify predictors of limitations in basic activities of daily living (BADL) among people with severe disabilities.
Methods:
4075 long-term care beneficiaries with severe disabilities in Guangzhou, China, were included during July 2018 and March 2019. BADL was assessed using the Barthel index (BI). Muscle strength was measured by using the Lovett Rating Scale. Age, gender, comorbidities, and muscle strengths were collected as independent variables. Chi-square Automatic Interaction Detector (CHAID) method was used to examine associations between independent variables and item scores of the BI.
Results:
Muscle strength and history of stroke were parent node and child node for most of BADL limitations, respectively. Upper limb muscle strength (≤ 3) was a major predictor for dependence in feeding, grooming, toileting, dressing, and transfer, while lower limb muscle strength (≤ 3) was a major predictor for limitation in mobility.
Conclusions:
Muscle strength was the strongest predictor of BADLs among people with severe disability. Muscle strength grading may be optimal for designing supporting strategies for people with severe disabilities.
As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown.
Methods
To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis.
Results
Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus.
Conclusions
Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.