We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most research on intertemporal choice has examined choices between smaller, sooner gains and larger, later gains. A much smaller number of papers have examined intertemporal choices for losses. In this article, we explore whether mixed-sign choices with both gains and losses may better correlate with real-world behaviors. In two high-powered studies (pilot: N = 3,200; main study: N = 7,000), participants completed one of four normatively equivalent measures consisting of pure gain, pure loss, or mixed sign (Gain-Now-Loss-Later or Loss-Now-Gain-Later) intertemporal choices. Participants also self-reported a large number of demographic measures and real-world choice behaviors thought to be linked to intertemporal choice. The results indicate that (1) mixed-sign intertemporal choices yield more patient time preferences than pure-gain choices but less patient than pure-loss choices and (2) pure-gain intertemporal choices yield equivalent or superior predictive power across a range of real-world intertemporal choice behaviors.
We present the generation of high-repetition-rate strong-field terahertz (THz) pulses from a thin 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) organic crystal pumped by an ytterbium-doped yttrium aluminum garnet laser. The generated THz pulse energy reaches 932.8 nJ at 1 kHz repetition rate, with a conversion efficiency of 0.19% and a peak electric field of 819 kV/cm. At a repetition rate of 10 kHz, it is able to maintain a peak electric field of 236 kV/cm and an average THz power of 0.77 mW. The high-repetition-rate, strong-field THz source provides a convenient tool for the study of THz matter manipulation and THz spectroscopy.
Cancer diagnosis and treatment can result in a significant psychological burden. This study sought to investigate the prevalence of major depression, associated treatments, and suicidal ideation in cancer survivors compared to a non-cancer cohort.
Methods
This is a retrospective, population-based study using survey responses from the National Survey on Drug Use and Health collected from January 2015 to December 2019. Survey data sets were queried for all respondents who provided a cancer history. Respondents with a reported history of cancer (“cancer survivors”) were further stratified by whether they reported a “recent” cancer diagnosis within the past 12 months. Survey responses were evaluated for recent diagnoses of and treatments for major depressive disorder and suicidal ideation.
Results
Among the 212,411 survey respondents identified, 7,635 (3.6%) reported a cancer history, with 1,486 (0.7%) reporting a recent cancer history. There were no differences in prevalence of major depression between cancer survivors and participants without cancer (9.3% vs 9.2%, p = 0.762), though the prevalence was slightly higher among recent cancer survivors (10.0% vs 9.2%, p = 0.259). Among respondents diagnosed with major depression, cancer survivors were significantly more likely to receive treatment for depression (78.6% vs 60.3%, p < 0.001). Suicidal ideation was significantly lower among cancer survivors (5.1% vs 6.2%, p < 0.001) including recent survivors (5.0% vs 6.2%, p < 0.001).
Significance of results
There was no overall difference in the prevalence of major depression between cancer survivors and respondents without cancer. Survivors with major depression were more likely to receive treatments. Prevalence of major depression was higher in recent cancer survivors.
Supersonic internal flows often exhibit multiple reflected shocks within a limited distance. These shocks can interact with each other in a complex manner due to the characteristics of the shock wave–turbulent boundary layer interaction (STBLI), including flow distortion and the relaxing boundary layer. This study aims to characterise this type of interaction and to clarify its fluid physics. A separated STBLI zone was established either upstream or downstream, and another weaker STBLI was established in the opposing position to serve as a perturbation. Time-resolved measurements were employed to characterise the mean separation and unsteadiness as the two regions approached each other, as well as their relationship. The experimental results indicated that the STBLI could affect the separation and reattachment of the other STBLI through either the decelerated or relaxing boundary layer. Despite a small deflection angle, the incident shock can amplify the low-frequency oscillations in the downstream STBLI region. Additionally, the interaction in the downstream region can be influenced by both low- and high-frequency oscillations associated with the upstream STBLI through a relaxing boundary layer. Despite the limited correlation observed between the low-frequency fluctuations in the downstream region and the boundary layer flow not far upstream, there still exists some degree of correlation between the low-frequency shock motions even when they are widely separated. Both the ‘upstream mechanism’ and ‘downstream mechanism’ have been observed, and the significance of low-frequency dynamics in the separated flow, relative to that of the upstream flow, is closely associated with interaction intensity.
This study aimed to evaluate the association between vegetable intake and major depressive disorder (MDD) through cross-sectional analysis and bidirectional two-sample Mendelian randomisation (MR).
Design:
Cross-sectional analysis was conducted on National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018 and the corresponding Food Patterns Equivalents Database (FPED). Genome-wide association study (GWAS) data were obtained from UK Biobank and Psychiatric Genomics Consortium (PGC) dataset. Logistic regression analysis was performed after calculating the weights of the samples. Inverse variance weighted, MR-Egger and weighted median methods were used to evaluate the causal effects.
Setting:
A Patient Health Questionnaire-9 score ≥ 10 was considered to indicate MDD. Low vegetable intake was defined as < 2 cups of vegetables per day.
Participants:
30 861 U.S. adults from NHANES. The GWAS data sample size related to vegetable intake were comprised 448 651 and 435 435 cases respectively, while the GWAS data sample size associated with MDD encompassed 500 199 cases.
Results:
There were 23 249 (75·33 %) participants with low vegetable intake. The relationship between vegetable intake and MDD was nonlinear. In the multivariate model adjusted for sex, age, education, marital status, poverty income ratio, ethnicity and BMI, participants with low vegetable intake were associated with an increased risk of MDD (OR = 1·53, 95 % CI (1·32, 1·77), P < 0·001). Bidirectional MR showed no causal effects between vegetable intake and MDD.
Conclusions:
Cross-sectional analysis identified a significant relationship between vegetable intake and MDD, whereas the results from bidirectional two-sample MR did not support a causal role.
This study compared survival outcomes between intensive care unit (ICU) patients receiving enteral nutrition (EN) and parenteral nutrition (PN) with vasopressor support, explored risk factors affecting clinical outcomes and established an evaluation model. Data from 1046 ICU patients receiving vasopressor therapy within 24 h from 2008 to 2019 were collected. Patients receiving nutritional therapy within 3 d of ICU admission were divided into EN or PN (including PN+EN) groups. Cox analysis and regression were used to determine relevant factors and establish a nomogram for predicting survival. The 28-d survival rate was significantly better in the EN group compared with the PN/PN+EN group. Risk factors included age, peripheral capillary oxygen saturation, red cell distribution width, international normalised ratio, potassium level, mean corpuscular Hg, myocardial infarction, liver disease, cancer status and nutritional status. The nomogram showed good predictive performance. In ICU patients receiving vasopressor drugs, patients receiving EN had a better survival rate than PN. Our nomogram had favourable predictive value for 28-d survival in patients. However, it needs further validation in prospective trials.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
The diversity of human mortuary practices and treatments in prehistory is widely recognised, but our understanding of the purpose and manner of corpse manipulation in many regions is limited. This article reports on unusual aspects of funerary archaeology at the Neolithic site of Dingsishan, southern China. Anatomical consideration of cutmarks on human bones and the positioning of bodies and body parts within burials suggests that mortuary treatments at this site included strategic and systematic disarticulation, evisceration and excarnation. Rather than signalling social differences, these practices may have resulted from the very practical need to save space.
Estimate the impact of 20 % flat-rate and tiered sugary drink tax structures on the consumption of sugary drinks, sugar-sweetened beverages and 100 % juice by age, sex and socio-economic position.
Design:
We modelled the impact of price changes – for each tax structure – on the demand for sugary drinks by applying own- and cross-price elasticities to self-report sugary drink consumption measured using single-day 24-h dietary recalls from the cross-sectional, nationally representative 2015 Canadian Community Health Survey-Nutrition. For both 20 % flat-rate and tiered sugary drink tax scenarios, we used linear regression to estimate differences in mean energy intake and proportion of energy intake from sugary drinks by age, sex, education, food security and income.
Setting:
Canada.
Participants:
19 742 respondents aged 2 and over.
Results:
In the 20 % flat-rate scenario, we estimated mean energy intake and proportion of daily energy intake from sugary drinks on a given day would be reduced by 29 kcal/d (95 % UI: 18, 41) and 1·3 % (95 % UI: 0·8, 1·8), respectively. Similarly, in the tiered tax scenario, additional small, but meaningful reductions were estimated in mean energy intake (40 kcal/d, 95 % UI: 24, 55) and proportion of daily energy intake (1·8 %, 95 % UI: 1·1, 2·5). Both tax structures reduced, but did not eliminate, inequities in mean energy intake from sugary drinks despite larger consumption reductions in children/adolescents, males and individuals with lower education, food security and income.
Conclusions:
Sugary drink taxation, including the additional benefit of taxing 100 % juice, could reduce overall and inequities in mean energy intake from sugary drinks in Canada.
Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes.
Methods
Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions.
Results
Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13.
Conclusions
The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.
The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.
Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field, respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field, especially during the acceleration stage in inertial confinement fusion.
Research articles in the clinical and translational science literature commonly use quantitative data to inform evaluation of interventions, learn about the etiology of disease, or develop methods for diagnostic testing or risk prediction of future events. The peer review process must evaluate the methodology used therein, including use of quantitative statistical methods. In this manuscript, we provide guidance for peer reviewers tasked with assessing quantitative methodology, intended to complement guidelines and recommendations that exist for manuscript authors. We describe components of clinical and translational science research manuscripts that require assessment including study design and hypothesis evaluation, sampling and data acquisition, interventions (for studies that include an intervention), measurement of data, statistical analysis methods, presentation of the study results, and interpretation of the study results. For each component, we describe what reviewers should look for and assess; how reviewers should provide helpful comments for fixable errors or omissions; and how reviewers should communicate uncorrectable and irreparable errors. We then discuss the critical concepts of transparency and acceptance/revision guidelines when communicating with responsible journal editors.
Relativistic surface high harmonics, combined with the use of polarization gating, present a promising route towards intense single attosecond pulses. However, they impose stringent requirements on ultra-high laser contrast and are restricted by large intensity losses in real experiments. Here, we numerically demonstrate that by setting an optimal time delay in the polarization gating scheme, the intensity of the generated single attosecond pulses can become approximately 100 times stronger than that with nonoptimal time delay in the coherent synchrotron emission process. When a petawatt-class driving laser irradiates a solid target, an ultra-dense electron nanobunch and a strong space-charge sheath develop, and the accumulated electrostatic energy is only released in half of the laser cycle when this electron nanobunch moves backward. This process results in the emission of intense high harmonics. Our study provides a reliable method for developing bright attosecond extreme ultraviolet pulses.
Femtosecond laser ablation is widely applied in high-precision machining of microholes in aeroengine turbine blades. To further explore the mechanism of action during the laser processing of microholes, numerical simulations were performed on the basis of a molecular dynamics (MD) method coupled with a two-temperature model (TTM). Laser irradiation on the surface of copper for different femtosecond-laser processing parameters is investigated in this work. Through the femtosecond-laser single-pulse central ablation simulation model, the laser energy flux density in a Gaussian laser spot range was discretized and analyzed to calculate the ablation depth at multiple points separately. The cross-sectional morphology of the femtosecond-laser single-pulse ablation pits was approximated and fitted. Finally, a 3D simulation model of the whole process of multiscale femtosecond-laser spiral processing microholes was established by superimposing multipulse femtosecond-laser spiral trajectories. This provides a theoretical basis for analyzing the evolution of geometric parameters and morphological characteristics of the hole during machining with specific laser and process parameters.