We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The formation mechanism for the stopping vortex ring (SVR) and its effects on the development of starting jets have been systematically investigated. The radial inward flow near the nozzle exit, arising from the pressure difference caused by the deceleration of starting jets, is considered to be the main contributing factor to the formation of the SVR. The formation process can generally be divided into (i) the rapid accumulation stage ($t_d^*\leq 1$) and (ii) the development stage ($t_d^*>1$), where $t_d^*$ is the formation time defined by the duration of the deceleration stage. For starting jets with different $(L/D)_d$, the final circulation value and circulation growth rate of the SVR can be scaled by $[(L/D)_d]^{-0.5}$ and $[(L/D)_d]^{-1.5}$, respectively. Here $(L/D)_d$ represents the stroke ratio during the deceleration stage. Analysing the temporal evolution of fluid parcels in the vicinity of the nozzle exit reveals that SVR entrains fluid from both inside and outside of the nozzle. Additionally, the influence of the SVR on the leading vortex ring and the trailing jet has been examined, with particular attention to its effects on the propulsive performance of the starting jet. The SVR affects the profiles of axial velocity and gauge pressure at the nozzle exit, thereby enhancing the generation of total thrust during the deceleration stage. Analysis has shown that depending on the deceleration rate, SVR can enhance the average velocity thrust by at least $10\,\%$ and compensate for up to a $60\,\%$ reduction in pressure thrust due to deceleration.
In this paper, we study the effect of lateral wall vibrations on the excitation and evolution of non-modal perturbations in hypersonic boundary layers subject to low-frequency freestream vortical disturbances (FSVDs). A novel, high-efficiency numerical approach, combining the harmonic weakly nonlinear Navier–Stokes and nonlinear parabolised stability equation approaches, is developed, which is sufficient to accommodate both the rapid distortion of the perturbation in the leading-edge vicinity and the nonlinear development of finite-amplitude high-order harmonics in the downstream region. The boundary-layer response to low-frequency FSVDs shows a longitudinal streaky structure, for which the temperature perturbation shows much greater magnitude than the streamwise velocity perturbation. The lateral vibration induces a Stokes layer solution for the spanwise velocity perturbation, which interacts with the FSVD-induced perturbations and leads to a suppression of the non-modal perturbation and an enhancement of the downstream modal perturbation. The new perturbations excited by the FSVD–vibration interaction strengthen as the vibration intensifies, and they could become comparable with the FSVD-induced perturbations in downstream locations at a high vibration intensity, indicating a remarkable modification of the streaky structure and its instability property. Secondary instability (SI) analyses based on the streaky base flow indicate that the vibration could enhance or suppress the SI modes, depending on their initial phases over the vibration period. Overall, the average effect is that the low-frequency and high-frequency SI modes are stabilised and destabilised by the vibration, respectively. Since the high-frequency SI modes undergo higher amplifications, the subsequent bypass transition is likely to be promoted by relatively strong vibrations.
The tension distribution problem of cable-driven parallel robots is inevitable in real-time control. Currently, iterative algorithms or geometric algorithms are commonly used to solve this problem. Iterative algorithms are difficult to improve in real-time performance, and the tension obtained by geometric algorithms may not be continuous. In this paper, a novel tension distribution method for four-cable, 3-DOF cable-driven parallel robots is proposed based on the wave equation. The tension calculated by this method is continuous and differentiable, without the need for iterative computation or geometric centroid calculations, thus exhibiting good real-time performance. Furthermore, the feasibility and rationality of this algorithm are theoretically proven. Finally, the real-time performance and continuity of cable tension are analyzed through a specific numerical example.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid–fluid two-phase Taylor–Couette turbulence. This quantity consists of contributions from advection, diffusion and two-phase interface, which are closely related to density, viscosity and interfacial tension, respectively. We found from interface-resolved direct numerical simulations that the presence of the two-phase interface consistently produces a positive contribution to the momentum transport and leads to drag enhancement, while decreasing the density and viscosity ratios of the dispersed phase to the continuous phase reduces the contribution of local advection and diffusion terms to the momentum transport, respectively, resulting in drag reduction. Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio work together to compete with the presence of a two-phase interface for achieving drag modulation in fluid–fluid two-phase turbulence.
We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults.
Design:
This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk.
A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk.
Conclusion:
We found no association between dietary Se and CVD.
The fundamental resonance (FR) in the nonlinear phase of the boundary-layer transition to turbulence appears when a dominant planar instability mode reaches a finite amplitude and the low-amplitude oblique travelling modes with the same frequency as the dominant mode, together with the stationary streak modes, undergo the strongest amplification among all the Fourier components. This regime may be the most efficient means to trigger the natural transition in hypersonic boundary layers. In this paper, we aim to reveal the intrinsic mechanism of the FR in the weakly nonlinear framework based on the large-Reynolds-number asymptotic technique. It is found that the FR is, in principle, a triad resonance among a dominant planar fundamental mode, a streak mode and an oblique mode. In the major part of the boundary layer, the nonlinear interaction of the fundamental mode and the streak mode seeds the growth of the oblique mode, whereas the interaction of the oblique mode and the fundamental mode drives the roll components (transverse and lateral velocity) of the streak mode, which leads to a stronger amplification of the streamwise component of the streak mode due to the lift-up mechanism. This asymptotic analysis clearly shows that the dimensionless growth rates of the streak and oblique modes are the same order of magnitude as the dimensionless amplitude of the fundamental mode $(\bar {\epsilon }_{10})$, and the amplitude of the streak mode is $O(\bar {\epsilon }_{10}^{-1})$ greater than that of the oblique mode. The main-layer solution of the streamwise velocity, spanwise velocity and temperature of both the streak and the oblique modes become singular as the wall is approached, and so a viscous wall layer appears underneath. The wall layer produces an outflux velocity to the main-layer solution, inclusion of which leads to an improved asymptotic theory whose accuracy is confirmed by comparing with the calculations of the nonlinear parabolised stability equations (NPSEs) at moderate Reynolds numbers and the secondary instability analysis (SIA) at sufficiently high Reynolds numbers.
The characterization of energetic protons generated in the ShenGuang-II UP petawatt laser interactions with foil targets has been systematically studied. The proton energy spectra and angular distributions are measured with a radiochromic film stack. It shows that the proton energy spectra have a Boltzmann distribution with temperature of about 2.8 MeV and cutoff energy of about 20 MeV. The divergence angles of protons vary from 10° to 60°, dependent on the proton energy. The proton source size and location are investigated via the proton point-projection mesh imaging. The proton virtual sources are found to locate tens to hundreds of microns in front of the foil target, depending on the proton energies. A Monte Carlo simulation estimates the diameter of the virtual proton source to be about 12 μm for the protons with energy of 16.8 MeV, which is much smaller than the laser focus size of about 50 μm. The spatial resolution of the 16.8 MeV proton imaging is quantified with the point spread function to be about 15 μm, which is consistent with the proton virtual source size. These results will be important for the users conducting experiments with the protons as a backlighting source on the ShenGuang-II UP petawatt laser.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
Dietary antioxidant indices (DAI) may be potentially associated with relative telomere length (RTL) of leucocytes. This study aimed to investigate the relationship between DAI and RTL. A cross-sectional study involving 1656 participants was conducted. A generalised linear regression model and a restricted cubic spline model were used to assess the correlation of DAI and its components with RTL. Generalised linear regression analysis revealed that DAI (β = 0·005, P = 0·002) and the intake of its constituents vitamin C (β = 0·043, P = 0·027), vitamin E (β = 0·088, P < 0·001), Se (β = 0·075, P = 0·003), and Zn (β = 0·075, P = 0·023) were significantly and positively correlated with RTL. Sex-stratified analysis showed that DAI (β = 0·006, P = 0·005) and its constituents vitamin E (β = 0·083, P = 0·012), Se (β = 0·093, P = 0·006), and Zn (β = 0·092, P = 0·034) were significantly and positively correlated with RTL among females. Meanwhile, among males, only vitamin E intake (β = 0·089, P = 0·013) was significantly and positively associated with RTL. Restricted cubic spline analysis revealed linear positive associations between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in the total population. Sex-stratified analysis revealed a linear positive correlation between DAI and its constituents’ (vitamin E, Se and Zn) intake and RTL in females. Our study found a significant positive correlation between DAI and RTL, with sex differences.
We find firm cyclicality decreases by 40% after the inception of credit default swap (CDS) trading. The effect stems from CDS firms’ less aggressive asset growth in good times and is stronger for firms facing a more severe empty creditor problem. Important identification issues are addressed. The result cannot be explained with debt overhang, bank lending cyclicality, or the cyclicality of firms’ business fundamentals. It holds for the cyclicality of various corporate outcomes (inventories, cash, and employment). Importantly, CDS trading impedes unhealthy growth and enhances profitability and firm value. Our finding indicates an important positive real effect of financial innovation.
This paper focuses on the linear evolution of Mack instability modes in a hypersonic boundary layer over a flat plate that is partially coated by a compliant section. The compliant section is a thin, flexible membrane covering on a porous wall consisting of micro holes. The instability pressure could induce a vibration of the membrane, leading to a feedback to the boundary-layer fluids through the transverse velocity fluctuation. Such a process is formulated by an admittance boundary condition for the boundary-layer perturbation, which is dependent on the thickness and tension of the membrane, the properties of the porous wall, and the frequency of the Mack-mode perturbation. Using this admittance condition, the impact of the compliant coating on the Mack growth rate is studied systematically by solving the compressible Orr–Sommerfeld equations. It is found that the compliant coating could suppress the Mack instability with a frequency band in the neighbourhood of the most unstable frequency, and the stabilising frequency band widens as the membrane thickness and tension decrease, indicating a more favourable effect of a softer membrane. For a Mack mode with a specified dimensional frequency – since its dimensionless frequency, normalised by the local boundary-layer thickness and oncoming velocity, increases as it propagates downstream – the second-mode frequency band usually appears in downstream locations, and so does the stabilising effect of the membrane. Thus it is favourable to apply a compliant panel at a downstream region. In this situation, the solid–compliant junction could produce an additional scattering effect on the evolution of the Mack mode due to the sudden change of its boundary condition. The scattering effect is quantified by a transmission coefficient defined by the equivalent amplitude of the compliant-wall perturbation to the solid-wall perturbation, which can be obtained by the harmonic linearised Navier–Stokes (HLNS) approach. If the admittance is weak, then the transmission coefficient can also be predicted by an analytical solution based on the residue theorem. It is found that most of the second modes are suppressed by the scattering effect as long as the argument of the admittance is in the interval $[150^\circ, 210^\circ ]$, agreeing with most of the physical situation. The analytical predictions agree well with the HLNS calculations when the modulus of the admittance is less than $O(0.1)$.
In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.
Depression is a common mental disorder that endangers physical and mental health. In our study, we aimed to explore whether B vitamins are associated with depression and cognitive dysfunction.
Methods:
We enrolled a total of 220 patients with depression and selected 100 controls at the same time. We determined depression and cognitive impairment by assessments. We recorded the basic parameters of the participants and collected blood samples. In addition, we measured serum levels of B vitamins and brain-derived neurotrophic factor (BDNF).
Results:
We found significant differences in the duration of depression, education, and Hamilton Depression Rating Scale scores between the D-NCI and D-CI groups. We also identified the independent risk factors for patients with depression and cognitive dysfunction. Compared with the healthy controls, serum folate, vitamin B6, and vitamin B12 positively correlated with cognitive dysfunction. The patients with depression and cognitive dysfunction had the lowest levels of B vitamins compared with the other two groups. Our results also showed that the levels of serum folate, vitamin B6, and vitamin B12 in the patients with depression had a positive correlation with each other.
Conclusion:
Our results indicate that vitamin B is associated with depression and cognitive dysfunction and is positively associated with cognitive dysfunction.
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
In this paper, we study the local receptivity of the inviscid Mack modes in hypersonic boundary layers induced by the interaction between a surface heating or cooling source (HCS) and a freestream acoustic wave. The asymptotic analysis reveals that among the three distinguished layers, i.e. the main, wall and Stokes layers, the leading-order receptivity is attributed to the interaction of the HCS-induced mean-flow distortion and the acoustic signature in the wall layer; the second-order contribution appears in the Stokes layer; the third-order contribution appears in both the main and wall layers. Interestingly, at a moderate Reynolds number, the third-order contribution to the receptivity efficiency may be quantitatively greater than the second-order one, but this does not lead to breakdown of this asymptotic theory. Assuming the HCS intensity to be sufficiently weak, the asymptotic predictions are made for four representative cases involving different Mach numbers and wall temperatures, which are compared with the results obtained by the finite-Reynolds-number theory based on either the extended compressible Orr–Sommerfeld equations or the harmonic linearised Navier–Stokes (HLNS) calculations. Taking into account the first three orders of the receptivity efficiency, the asymptotic predictions are confirmed to be sufficiently accurate even when the Reynolds number is a few thousands, and the agreement with the finite-Reynolds-number calculations is better when the wall temperature of the base flow approaches the adiabatic wall temperature. The HLNS calculations are also conducted for moderate HCS intensities. It is found that the nonlinearity does not affect the receptivity coefficient much even when the temperature distortion of the HCS reaches $80\,\%$ of the temperature at the wall.
In recent years, a Trigonorhinus sp. (Coleoptera) has caused serious damage to Caragana liouana Zhao Y. Chang and Yakovlev, a major ecological restoration shrub in China. Here, we survey the occurrence and damage pattern of Trigonorhinus sp. and its galls and compare the growth of affected and unaffected plants. Trigonorhinus sp. larvae usually infest the main trunk and lateral branches of the plant, causing the affected branches to become partially swollen and verrucose. Galls develop in stages depending on whether eggs are laid in May or July and proceed in sequence over three years from egg-laying to formation, expansion, dormancy, maturity, dormancy, maturity, and death. Galls inhibit plant development to some extent. On average, six (at least one, and no more than 18; standard error of the mean = 3) larvae occupy each gall, and the number of larvae within a gall did not significantly affect gall size. Gall size significantly affected branch dieback, and large-diameter infested branches had larger galls. This study clarifies the growth dynamics of Trigonorhinus sp. galls and provides a basis for further research into the growth mechanism of the species’ galls.
The aim of this study was to investigate the factors influencing urban–rural differences in depressive symptoms among old people in China and to measure the contribution of relevant influencing factors.
Design:
A cross-sectional research. The 2018 data from The Chinese Longitudinal Health Longevity Survey (CLHLS).
Setting:
Twenty-three provinces in China.
Participants:
From the 8th CLHLS, 11,245 elderly participants were selected who met the requirements of the study.
Measurements:
We established binary logistic regression models to explore the main influencing factors of their depressive symptoms and used Fairlie models to analyze the influencing factors of the differences in depressive symptoms between the urban and rural elderly and their contribution.
Results:
The percentage of depressive symptoms among Chinese older adults was 11.72%, and the results showed that rural older adults (12.41%) had higher rates of depressive symptoms than urban (10.13%). The Fairlie decomposition analysis revealed that 73.96% of the difference in depressive symptoms could be explained, which was primarily associated with differences in annual income (31.51%), education level (28.05%), sleep time ( − 25.67%), self-reported health (24.18%), instrumental activities of daily living dysfunction (20.73%), exercise (17.72%), living status ( − 8.31%), age ( − 3.84%), activities of daily living dysfunction ( − 3.29%), and social activity (2.44%).
Conclusions:
The prevalence of depressive symptoms was higher in rural than in urban older adults, which was primarily associated with differences in socioeconomic status, personal lifestyle, and health status factors between the urban and rural residents. If these factors were addressed, we could make targeted and precise intervention strategies to improve the mental health of high-risk elderly.