We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Geoscientists worldwide are developing and applying methodologies to estimate geologic hazards associated with the siting of nuclear facilities. Understanding such hazards, particularly in the context of the long functional lifetimes of many nuclear facilities, is challenging. This book documents the current state-of-the-art in volcanic and tectonic hazard assessment for proposed nuclear facilities, which must be located in areas where the risks associated with geologic processes are quantifiable and demonstrably low. Specific topics include overviews of volcanic and tectonic processes, the history of the development of hazard assessment methodologies, description of current techniques for characterizing hazards, and development of probabilistic methods for estimating risks. Hazard assessment examples are drawn from around the world. This volume will promote interest and debate about this important topic among researchers and graduates developing methods in geologic hazard assessment, geologists and engineers who assess the safety of nuclear facilities, and regulatory bodies that evaluate such assessments.