We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Acetyl co-enzyme A carboxylase (ACCase)-resistant rice allows quizlaofop-p-ethyl to be applied as a POST control of troublesome grass weeds. A field study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate the influence of a crop oil concentrate (COC), a silicon-based surfactant plus a nitrogen source (SNS), or a high-concentrate COC (HCOC) in overcoming the grass weed control antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na. Quizalofop-p-ethyl was applied at 120 g ai ha−1, bispyribac-Na was applied at 34 g ai ha−1, and all adjuvants were applied at 1% vol/vol. Antagonistic interactions were observed at 14 d after treatment (DAT) when quizalofop-p-ethyl was mixed with bispyribac-Na with no adjuvant for control of barnyardgrass, the non–ACCase-tolerant rice cultivars ‘CL-111’ and ‘CLXL-745’, and red rice. At 14 DAT, antagonism of quizalofop-p-ethyl for control of barnyardgrass was observed when mixed with bispyribac-Na plus COC, SNS, or HCOC, with an observed control of 43%, 63%, and 86%, respectively, compared with an expected control of 95% for quizalofop-p-ethyl alone. However, the antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na plus HCOC for barnyardgrass control at 14 DAT was overcome by 28 DAT, with an observed control of 91%, compared with an expected control of 97%. Synergistic or neutral interactions were observed at 14 and 28 DAT when COC, SNS, or HCOC was added to a mixture of quizalofop-p-ethyl plus bispyribac-Na for CL-111, CLXL-745, and red rice control. According to the results of this study, HCOC is the most effective adjuvant for quizalofop-p-ethyl and bispyribac-Na mixtures for control of weedy rice and barnyardgrass.
Six on-farm studies determined the effects of a rolled rye cover crop, herbicide program, and planting technique on cotton stand, weed control, and cotton yield in Georgia. Treatments included: (1) rye drilled broadcast with 19-cm row spacing and a broadcast-herbicide program (2) rye drilled with a 25-cm rye-free zone in the cotton row and a broadcast-herbicide program (3) rye drilled with a 25-cm rye-free zone in the cotton row with PPI and PRE herbicides banded in the cotton planting row, and (4) no cover crop (i.e., weedy cover) with broadcast herbicides. At two locations, cotton stand was lowest with rye drilled broadcast; at these sites the rye-free zone maximized stand equal to the no-cover system. At a third location, cover crop systems resulted in greater stand, due to enhanced soil moisture preservation compared with the no-cover system. Treatments did not influence cotton stand at the other three locations and did not differ in the control of weeds other than Palmer amaranth at any location. Treatments controlled Palmer amaranth equally at three locations; however, differences were observed at the three locations having the greatest glyphosate-resistant plant densities. For these locations, when broadcasting herbicides, Palmer amaranth populations were reduced 82% to 86% in the broadcast rye and rye-free zone systems compared with the no-cover system at harvest. The system with banded herbicides was nearly 21 times less effective than the similar system broadcasting herbicides. At these locations, yields in the rye broadcast and rye-free zone systems with broadcast herbicides were increased 9% to 16% compared with systems with no cover or a rye-free zone with PPI and PRE herbicides banded. A rolled rye cover crop can lessen weed emergence and selection pressure while improving weed control and cotton yield, but herbicides should be broadcast in fields heavily infested with glyphosate-resistant Palmer amaranth.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
Background: Biallelic variants in POLR1C are associated with POLR3-related leukodystrophy (POLR3-HLD), or 4H leukodystrophy (Hypomyelination, Hypodontia, Hypogonadotropic Hypogonadism), and Treacher Collins syndrome (TCS). The clinical spectrum of POLR3-HLD caused by variants in this gene has not been described. Methods: A cross-sectional observational study involving 25 centers worldwide was conducted between 2016 and 2018. The clinical, radiologic and molecular features of 23 unreported and previously reported cases of POLR3-HLD caused by POLR1C variants were reviewed. Results: Most participants presented between birth and age 6 years with motor difficulties. Neurological deterioration was seen during childhood, suggesting a more severe phenotype than previously described. The dental, ocular and endocrine features often seen in POLR3-HLD were not invariably present. Five patients (22%) had a combination of hypomyelinating leukodystrophy and abnormal craniofacial development, including one individual with clear TCS features. Several cases did not exhibit all the typical radiologic characteristics of POLR3-HLD. A total of 29 different pathogenic variants in POLR1C were identified, including 13 new disease-causing variants. Conclusions: Based on the largest cohort of patients to date, these results suggest novel characteristics of POLR1C-related disorder, with a spectrum of clinical involvement characterized by hypomyelinating leukodystrophy with or without abnormal craniofacial development reminiscent of TCS.
Background: Emergency Department (ED) communication between patients and clinicians is fraught with challenges. A local survey of 65 ED patients revealed low patient satisfaction with ED communication and resultant patient anxiety. Aim Statement: To increase patient satisfaction with ED communication and to decrease patient anxiety related to lack of ED visit information (primary aims), and to decrease clinician-perceived patient interruptions (secondary aim), each by one point on a 5-point Likert scale over a six-month period. Measures & Design: We performed wide stakeholder engagement, surveyed patients and clinicians, and conducted a patient focus group. An inductive analysis followed by a yield-feasibility-effort grid led to three interventions, introduced through sequential and additive Plan-Do-Study-Act (PDSA) cycles. PDSA 1: clinician communication tool (Acknowledge-Empathize-Inform [AEI] tool), based on survey themes and a literature review, and introduced through a multi-modal education approach. PDSA 2: patient information pamphlets developed with stakeholder input. PDSA 3: new waiting room TV screen with various informational ED-specific videos. Measures were conducted through anonymous surveys: Primary aims towards the end of the patient ED stay, and the secondary aim at the end of the clinician shift. We used Statistical Process Control (SPC) charts with usual special cause variation rules. Two-tailed Mann-Whitney tests were used to assess for statistical significance between means (significance: p < 0.05). Evaluation/Results: Over five months, 232 patient and 104 clinician surveys were collected. Wait times, ED processes, timing of typical steps, and directions were reported as the most important communication gaps, they and were included in the interventions. Patient satisfaction improved from 3.28 (5 being best, all means; n = 65) to 4.15 (n = 59, p < 0.0001). Patient anxiety improved from 2.96 (1 being best; n = 65) to 2.31 (n = 59, p < 0.01). Clinician-perceived interruptions went from 4.33 (1 being best; n = 30) to 4.18 (n = 11, p = 0.98). SPC charts using Likert scales did not show special cause variation. Discussion/Impact: A sequential, additive approach undertaken with pragmatic and low-cost interventions based on both clinician and patient input led to increased patient satisfaction with communication and decreased patient anxiety due to lack of ED visit information after PDSA cycles. These approaches could easily be replicated in other EDs to improve the patient experience.
We provide the first in situ measurements of antenna element beam shapes of the Murchison Widefield Array. Most current processing pipelines use an assumed beam shape, which can cause absolute and relative flux density errors and polarisation ‘leakage’. Understanding the primary beam is then of paramount importance, especially for sensitive experiments such as a measurement of the 21-cm line from the epoch of reionisation, where the calibration requirements are so extreme that tile to tile beam variations may affect our ability to make a detection. Measuring the primary beam shape from visibilities is challenging, as multiple instrumental, atmospheric, and astrophysical factors contribute to uncertainties in the data. Building on the methods of Neben et al. [Radio Sci., 50, 614], we tap directly into the receiving elements of the telescope before any digitisation or correlation of the signal. Using ORBCOMM satellite passes we are able to produce all-sky maps for four separate tiles in the XX polarisation. We find good agreement with the beam model of Sokolowski et al. [2017, PASA, 34, e062], and clearly observe the effects of a missing dipole from a tile in one of our beam maps. We end by motivating and outlining additional on-site experiments.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
Sugarbeet, grown for biofuel, is being considered as an alternate cool-season crop in the southeastern United States. Previous research identified ethofumesate PRE and phenmedipham + desmedipham POST as herbicides that controlled troublesome cool-season weeds in the region, specifically cutleaf evening-primrose. Research trials were conducted from 2014 through 2016 to evaluate an integrated system of sweep cultivation and reduced rates of ethofumesate PRE and/or phenmedipham+desmedipham POST for weed control in sugarbeet grown for biofuel. There were no interactions between the main effects of cultivation and herbicides for control of cutleaf evening-primrose and other cool-season species in two out of three years. Cultivation improved control of cool-season weeds, but the effect was largely independent of control provided by herbicides. Of the herbicide combinations evaluated, the best overall cool-season weed control was from systems that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST. Either rate of ethofumesate PRE was less effective than phenmedipham+desmedipham POST. Despite improved cool-season weed control, sugarbeet yield was not affected by cultivation each year of the study. Sugarbeet yields were greater when treated with any herbicide combination that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST compared with either rate of ethofumesate PRE alone or the nontreated control. These results indicate that cultivation has a very limited role in sugarbeet grown for biofuel. The premise of effective weed control based on an integration of cultivation and reduced herbicide rates does not appear to be viable for sugarbeet grown for biofuel.
In Cameroon, there is a national programme engaged in the control of schistosomiasis and soil-transmitted helminthiasis. In certain locations, the programme is transitioning from morbidity control towards local interruption of parasite transmission. The volcanic crater lake villages of Barombi Mbo and Barombi Kotto are well-known transmission foci and are excellent context-specific locations to assess appropriate disease control interventions. Most recently they have served as exemplars of expanded access to deworming medications and increased environmental surveillance. In this paper, we review infection dynamics through time, beginning with data from 1953, and comment on the short- and long-term success of disease control. We show how intensification of local control is needed to push towards elimination and that further environmental surveillance, with targeted snail control, is needed to consolidate gains in preventive chemotherapy as well as empower local communities to take ownership of interventions.
The current emphasis of schistosomiasis control is placed on preventive chemotherapy using praziquantel. However, reinfection may occur rapidly in the absence of complementary interventions. Recent studies from Senegal suggest that predatory prawns might feed on intermediate host snails and thus impact on schistosomiasis transmission. We designed a study with four repeated cross-sectional surveys pertaining to prawns and snails, coupled with a single cross-sectional parasitological survey among humans. We assessed for potential associations between the presence/density of prawns and snails and correlation with Schistosoma infection in a composite sample of school-aged children and adults. The study was carried out between October 2015 and December 2016 in 24 villages located near the Agnéby and Mé coastal river systems in south-eastern Côte d'Ivoire. At each site, snails and prawns were collected, and in each village, 150 individuals were subjected to stool and urine examination for the diagnosis of Schistosoma mansoni and S. haematobium. We found peaks of relative abundance of intermediate host snails in the villages of the Agnéby River system, while predatory prawns were predominantly recorded in the Mé River system. A negative association was observed between intermediate host snail densities and riverine prawns; however, no pattern was found between this trend in the predator–prey relationship and the prevalence of human schistosomiasis.
Paragonimiasis, human lung fluke disease, is a foodborne anthropozoonosis caused by the trematodes assigned to Paragonimus and is regarded by the World Health Organization as a Neglected Tropical Disease (NTD). The life cycle of this medically important parasite centres on a complex freshwater biological community that includes two intermediate hosts: a mollusc and a decapod, usually a brachyuran. Although there is a perception that the biology, symptoms, diagnosis and treatment of Paragonimus is well understood, in reality, this is not the case, especially in Africa. Much remains unknown concerning the life-cycle of the parasite, its transmission, the current epidemiology of the disease, diagnosis and the effectiveness of treatment. Furthermore, cases of paragonimiasis may be misdiagnosed as resistant tuberculosis (TB) because of the similar pulmonary symptoms and no remission after anti TB therapy. The endemic foci of human paragonimiasis in Africa have been reported mainly in the forest zones of Upper Guinea (Liberia, Guinea and Ivory Coast) and Lower Guinea (Nigeria, Cameroon, Equatorial Guinea and Gabon). Despite the perceived medical importance of paragonimiasis, relatively little attention has been paid to this NTD since its discovery in Africa in the 1960s. This review focuses on the current understanding of the life cycle and transmission of Paragonimus in Africa, discusses its diagnosis and public health importance and highlights many outstanding gaps in the knowledge that still exist for this NTD.
The study of parasites typically crosses into other research disciplines and spans across diverse scales, from molecular- to populational-levels, notwithstanding promoting an understanding of parasites set within evolutionary time. Today, the 2030 Sustainable Development Goals (SDGs) help frame much of contemporary parasitological research, since parasites can be found in all ecosystems, blighting human, animal and plant health. In recognition of the multi-disciplinary nature of parasitological research, the 2017 Autumn Symposium of the British Society for Parasitology was held in London to provide a forum for novel exchange across medical, veterinary and wildlife fields of study. Whilst the meeting was devoted to the topic of parasitism, it sought to foster mutualism, the antithesis perhaps of parasitism, by forging new academic connections and social networks to exchange novel ideas. The meeting also celebrated the longstanding career of Professor David Rollinson, FLS in the award of the International Federation for Tropical Medicine Medal for his efforts spanning 40 years of parasitological research. Indeed, David has done so much to explore and promote the fascinating biology of parasitism, as exemplified by the 15 manuscripts contained within this Special Issue.
Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.
With the push towards control and elimination of soil-transmitted helminthiasis and schistosomiasis in low- and middle-income countries, there is a need to develop alternative diagnostic assays that complement the current in-country resources, preferably at a lower cost. Here, we describe a novel high-resolution melt (HRM) curve assay with six PCR primer pairs, designed to sub-regions of the nuclear ribosomal locus. Used within a single reaction and dye detection channel, they are able to discriminate Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Ascaris lumbricoides, Trichuris trichiuria and Schistosoma spp. by HRM curve analysis. Here we describe the primers and the results of a pilot assessment whereby the HRM assay was tested against a selection of archived fecal samples from Ghanaian children as characterized by Kato–Katz and real-time PCR analysis with species-specific TaqMan hydrolysis probes. The resulting sensitivity and specificity of the HRM was 80 and 98.6% respectively. We judge the assay to be appropriate in modestly equipped and resourced laboratories. This method provides a potentially cheaper alternative to the TaqMan method for laboratories in lower resource settings. However, the assay requires a more extensive assessment as the samples used were not representative of all target organisms.
The causative agent of urogenital schistosomiasis, Schistosoma haematobium, was thought to be the only schistosome species transmitted through Bulinus snails on Unguja and Pemba Island (Zanzibar, United Republic of Tanzania). For insights into the environmental risk of S. haematobium transmission on Pemba Island, malacological surveys collecting Bulinus globosus and B. nasutus, two closely related potential intermediate hosts of S. haematobium were conducted across the island in November 2016. Of 1317 B. globosus/B. nasutus collected, seven B. globosus, identified through sequencing a DNA region of the mitochondrial cytochrome oxidase subunit 1 (cox1), were observed with patent infections assumed to be S. haematobium. However, when the collected cercariae were identified through sequencing a region of the cox1 and the nuclear internal transcribed spacer (ITS1 + 2), schistosomes from five of these B. globosus collected from a single locality were in fact S. bovis. The identified presence of S. bovis raises concerns for animal health on Pemba, and complicates future transmission monitoring of S. haematobium. These results show the pertinence for not only sensitive, but also species-specific markers to be used when identifying cercariae during transmission monitoring, and also provide the first molecular confirmation for B. globosus transmitting S. bovis in East Africa.
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Human fascioliasis infection sources are analysed for the first time in front of the new worldwide scenario of this disease. These infection sources include foods, water and combinations of both. Ingestion of freshwater wild plants is the main source, with watercress and secondarily other vegetables involved. The problem of vegetables sold in uncontrolled urban markets is discussed. Distinction between infection sources by freshwater cultivated plants, terrestrial wild plants, and terrestrial cultivated plants is made. The risks by traditional local dishes made from sylvatic plants and raw liver ingestion are considered. Drinking of contaminated water, beverages and juices, ingestion of dishes and soups and washing of vegetables, fruits, tubercles and kitchen utensils with contaminated water are increasingly involved. Three methods to assess infection sources are noted: detection of metacercariae attached to plants or floating in freshwater, anamnesis in individual patients, and questionnaire surveys in endemic areas. The infectivity of metacercariae is reviewed both under field conditions and experimentally under the effects of physicochemical agents. Individual and general preventive measures appear to be more complicated than those considered in the past. The high diversity of infection sources and their heterogeneity in different countries underlie the large epidemiological heterogeneity of human fascioliasis throughout.