We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
This study aimed to analyse the temporal and spatial trends in the burden of anxiety disorders and major depressive disorder related to bullying victimisation on global, regional and country scales.
Methods
Data were from the 2019 Global Burden of Disease (GBD) Study. We assessed the global disability-adjusted life years (DALYs, per 100 000 population) of anxiety disorders and major depressive disorder attributable to bullying victimisation by age, sex and geographical location. The percentage changes in age-standardised rates of DALYs were used to quantify temporal trends, and the annual rate changes across 204 countries and territories were used to present spatial trends. Furthermore, we examined the relationship between the sociodemographic index (SDI) and the burden of anxiety disorders as well as major depressive disorder attributable to bullying victimisation and its spatial and temporal characteristics globally.
Results
From 1990 to 2019, the global DALY rates of anxiety disorders and major depressive disorder attributable to bullying victimisation increased by 23.31 and 26.60%, respectively, with 27.27 and 29.07% for females and 18.88 and 23.84% for males. Across the 21 GBD regions, the highest age-standardised rates of bullying victimisation-related DALYs for anxiety disorders were in North Africa and the Middle East and for major depressive disorder in High-income North America. From 1990 to 2019, the region with the largest percentage increase in the rates of DALYs was High-income North America (54.66% for anxiety disorders and 105.88% for major depressive disorder), whereas the region with the slowest growth rate or largest percentage decline was East Asia (1.71% for anxiety disorders and −25.37% for major depressive disorder). In terms of SDI, this study found overall upward trends of bullying-related mental disorders in areas regardless of the SDI levels, although there were temporary downward trends in some stages of certain areas.
Conclusions
The number and rates of DALYs of anxiety disorders and major depressive disorder attributable to bullying victimisation increased from 1990 to 2019. Effective strategies to eliminate bullying victimisation in children and adolescents are needed to reduce the burden of anxiety disorders and major depressive disorder. Considering the large variations in the burden by SDI and geographic location, future protective actions should be developed based on the specific cultural contexts, development status and regional characteristics of each country.
As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.
Both one-dimensional in the horizontal direction (1DH, dispersive and non-dispersive) and two-dimensional in the horizontal direction (2DH) axisymmetric (approximate, non-dispersive) analytical solutions are derived for water waves generated by moving atmospheric pressures. For 1DH, three wave components can be identified: the locked wave propagating with the speed of the atmospheric pressure, $C_p$, and two free wave components propagating in opposite directions with the respective wave celerity, according to the linear frequency dispersion relationship. Under the supercritical condition ($C_p > C$, which is the fastest celerity of the water wave), the leading water wave is the locked wave and has the same sign (i.e. phase) as the atmospheric pressure, while the trailing free wave has the opposite sign. Under the subcritical condition ($C >C_p$) the fastest moving free wave component leads, and its free surface elevation has the same sign as the atmospheric pressure. For a long atmospheric pressure disturbance, the induced free surface profile mimics that of the atmospheric pressure. The 2DH problem involves an axisymmetric atmospheric pressure decaying in the radial direction as $O(r^{-1/2})$. Due to symmetry, only two wave components, locked and free, appear. The tsunami DART data captured during Tonga's volcanic eruption event are analysed. Corrections are necessary to isolate the free surface elevation data. Comparisons between the corrected DART data and the analytical solutions, including the arrival times of the leading locked waves and the trailing free waves, and the amplitude ratios, are in agreement in order of magnitude.
The challenges of post-atrocity recovery are massive and manifold, but perhaps the most fundamental is the capacity for previously divided groups to return to an emotional place of sustainable, harmonious coexistence. This requires efforts to break down the stereotypes and barriers of “tribalism,” including conflicting characterizations of victims and perpetrators. Yet even the best intentioned of such efforts often prove inadequate in the face of three common obstacles: (1) lack of clarity about the objectives of reconciliation, (2) application of a cookie-cutter reconciliation plan, and (3) an ineffective process used to design the plan. Thus, in this chapter we introduce four crucial objectives for promoting integrative dynamics, describe a system for operationalizing those objectives to fit the particular post-atrocity context, and illuminate key negotiation principles to ensure that the reconciliation design process itself moves toward a productive outcome.
The recovery of community-dwelling people diagnosed with mental illness is positively correlated with having their needs met; however, only a few person-centered services provide solutions that are tailored to the needs of such populations.
Objectives
The aim of this study was to evaluate the effectiveness of a needs-tailored recovery program.
Methods
A double-blind randomized controlled trial was used. In the experimental group, people diagnosed with mental illness received homecare services for six months as part of a new needs-tailored recovery program. The control group received existing community homecare services. Data were collected before and after the intervention (July 2020 to January 2021). The primary outcome was recovery, and secondary outcomes were needs, hope, empowerment, psychotic symptoms, and medication adherence.
Results
The recovery program integrated the evidence-based care elements for community-dwelling people diagnosed with mental illness that we had identified: need satisfaction, hope, empowerment, and medication adherence. In total, 62 participants were included. There were no significant pre-test differences between the two groups in terms of demographic or baseline variables. However, there were significant differences between them in the extent of improvement in recovery, needs, hope, and empowerment, and medication adherence improved significantly but similarly in both groups.
Conclusions
Our person-centered recovery program fitted individuals’ needs and improved recovery and related elements for personal recovery among community-dwelling people diagnosed with mental illness. This study increases our understanding of recovery-oriented care to prioritize therapeutic alliance, integrated needs assessment, individualized unique goals, hope, and empowerment.
Integration of clinical skills during graduate training in dual-degree programs remains a challenge. The present study investigated the availability and self-perceived efficacy of clinical continuity strategies for dual-degree trainees preparing for clinical training.
Methods:
Survey participants were MD/DO-PhD students enrolled in dual-degree-granting institutions in the USA. The response rate was 95% of 73 unique institutions surveyed, representing 56% of the 124 MD-PhD and 7 DO-PhD recognized training programs. Respondents were asked to indicate the availability and self-perceived efficacy of each strategy.
Results:
Reported available clinical continuity strategies included clinical volunteering (95.6%), medical grand rounds (86.9%), mentored clinical experiences (84.2%), standardized patients/ practice Objective Structured Clinical Examinations (OSCEs) (70.3%), clinical case reviews (45.9%), clinical journal clubs (38.3%), and preclinical courses/review sessions (37.2%). Trainees rated standardized patients (µ = 6.98 ± 0.356), mentored clinical experiences (µ = 6.94 ± 0.301), clinical skills review sessions (µ = 6.89 ± 0.384), preclinical courses/review sessions (µ = 6.74 ± 0.482), and clinical volunteering (µ = 6.60 ± 0.369), significantly (p < 0.050) higher than clinical case review (µ = 5.34 ± 0.412), clinical journal club (µ = 4.75 ± 0.498), and medicine grand rounds (µ = 4.45 ± 0.377). Further, 84.4% of respondents stated they would be willing to devote at least 0.5–1 hour per week to clinical continuity opportunities during graduate training.
Conclusion:
Less than half of the institutions surveyed offered strategies perceived as the most efficacious in preparing trainees for clinical reentry, such as clinical skills review sessions. Broader implementation of these strategies could help better prepare dual-degree students for their return to clinical training.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Only a limited number of patients with major depressive disorder (MDD) respond to a first course of antidepressant medication (ADM). We investigated the feasibility of creating a baseline model to determine which of these would be among patients beginning ADM treatment in the US Veterans Health Administration (VHA).
Methods
A 2018–2020 national sample of n = 660 VHA patients receiving ADM treatment for MDD completed an extensive baseline self-report assessment near the beginning of treatment and a 3-month self-report follow-up assessment. Using baseline self-report data along with administrative and geospatial data, an ensemble machine learning method was used to develop a model for 3-month treatment response defined by the Quick Inventory of Depression Symptomatology Self-Report and a modified Sheehan Disability Scale. The model was developed in a 70% training sample and tested in the remaining 30% test sample.
Results
In total, 35.7% of patients responded to treatment. The prediction model had an area under the ROC curve (s.e.) of 0.66 (0.04) in the test sample. A strong gradient in probability (s.e.) of treatment response was found across three subsamples of the test sample using training sample thresholds for high [45.6% (5.5)], intermediate [34.5% (7.6)], and low [11.1% (4.9)] probabilities of response. Baseline symptom severity, comorbidity, treatment characteristics (expectations, history, and aspects of current treatment), and protective/resilience factors were the most important predictors.
Conclusions
Although these results are promising, parallel models to predict response to alternative treatments based on data collected before initiating treatment would be needed for such models to help guide treatment selection.
Posttraumatic stress symptoms (PTSS) are common following traumatic stress exposure (TSE). Identification of individuals with PTSS risk in the early aftermath of TSE is important to enable targeted administration of preventive interventions. In this study, we used baseline survey data from two prospective cohort studies to identify the most influential predictors of substantial PTSS.
Methods
Self-identifying black and white American women and men (n = 1546) presenting to one of 16 emergency departments (EDs) within 24 h of motor vehicle collision (MVC) TSE were enrolled. Individuals with substantial PTSS (⩾33, Impact of Events Scale – Revised) 6 months after MVC were identified via follow-up questionnaire. Sociodemographic, pain, general health, event, and psychological/cognitive characteristics were collected in the ED and used in prediction modeling. Ensemble learning methods and Monte Carlo cross-validation were used for feature selection and to determine prediction accuracy. External validation was performed on a hold-out sample (30% of total sample).
Results
Twenty-five percent (n = 394) of individuals reported PTSS 6 months following MVC. Regularized linear regression was the top performing learning method. The top 30 factors together showed good reliability in predicting PTSS in the external sample (Area under the curve = 0.79 ± 0.002). Top predictors included acute pain severity, recovery expectations, socioeconomic status, self-reported race, and psychological symptoms.
Conclusions
These analyses add to a growing literature indicating that influential predictors of PTSS can be identified and risk for future PTSS estimated from characteristics easily available/assessable at the time of ED presentation following TSE.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Discordant monozygotic (MZ) twin methodologies are considered one of the foremost statistical approaches for estimating the influence of environmental factors on phenotypic variance. Limitations associated with the discordant MZ twin approach generates an inability to estimate particular relationships and adjust estimates for the confounding influence of gene-nonshared environment interactions. Recent advancements in molecular genetics, however, can provide the opportunity to address these limitations. The current study reviews an alternative technique, genetically adjusted propensity scores (GAPS) matching, that integrates observed genetic and environmental information to adjust for the confounding of these factors in nonkin individuals. Simulations and a real data example were used to compare the GAPS matching approach to the discordant MZ twin method. Although the results of the simulated comparisons demonstrated that the discordant MZ twin approach remains the more robust statistical technique to adjust for shared environmental and genetic factors, GAPS matching — under certain conditions — could represent a viable alternative when MZ twin samples are unavailable. Overall, the findings suggest that GAPS matching can potentially provide an alternative to the discordant MZ twin approach when limited variation exists between identical twin pairs. Moreover, the ability to adjust for gene-nonshared environment interactions represents a potential advancement associated with the GAPS approach. The limitations of the approach, as well as polygenic risk scores, are also discussed.
For a multi-vectored propeller aerostat with actuator faults, this study presents a fault-tolerant tracking control strategy, which includes fault modeling, observer, force estimation and tracking controller. Fault modeling considers the four types of faults of vectored propellers, namely, thrust offset, thrust efficiency loss, vectored angle offset and vectored angle stuck. Actuator faults can be determined from the fault observer, which identifies the thrust offset from the acceleration difference of the faulty aerostat with the ideal model. For tracking positions, a traditional PID controller is constructed with virtual control, compensated with the estimated fault force. The control allocation scheme is proposed to redistribute the available actuators in case faults occur. Simulation results of position tracking prove the effectiveness of the proposed strategy.
An analytical solution is developed for studying transient water wave-induced responses inside an unsaturated poroelastic seabed of finite thickness. The soil skeleton and the pore fluid are compressible and the constitutive relationship of the soil skeleton is described by Hooke's law. Assuming that the horizontal length scale of wave motion is much larger than the seabed thickness, the leading-order analytical solutions for the seabed responses, including pore fluid pressure and soil skeleton motion, are obtained. The present solutions are suitable for general transient wave loading and for the shear modulus of the soil skeleton being of the same order of magnitude as the effective bulk modulus of elasticity of the pore fluid. The present theory is first validated by checking the solutions with the experimental data for the pore pressure induced by periodic-wave loading. The present analytical solutions are then used to investigate the seabed responses under transient waves, including linear periodic wave, a solitary wave and a bore. The effects of the wave-induced effective stresses on the bed failure potential are further analysed. The results show that the shear failure potential and its duration are highly dependent on the soil properties, such as saturation degree, shear modulus and permeability. Sensitivity analyses are presented.
The depth-integrated wave–current models developed by Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) are extended to investigate currents with an arbitrary vertical profile in the water column. In the present models, horizontal velocities are decomposed into two components. The first part deduces the prescribed current velocity when waves are absent. The second part is approximated in a polynomial form. The resulting depth-integrated wave–current models are obtained by applying the weighted residual method. In the absence of currents, the present models are identical to those in Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) and are validated with several three-dimensional (3D) benchmark laboratory experiments. A theoretical analysis is conducted to study the frequency dispersion relation of linear waves on currents with an exponential vertical profile and the results are compared with numerical solutions of the Rayleigh equation. Using the new models, validations and investigations are then conducted for periodic waves and solitary waves on currents with an arbitrary profile in one-dimensional horizontal (1DH) space. Furthermore, the new models are applied to wave–current interactions in two-dimensional horizontal (2DH) space. Two scenarios are considered: (1) wave propagation over a vortex-ring-like current and (2) obliquely incident wave propagation over a 3D sheared current on a varying bathymetry. The vertical and horizontal shear of the current have significant effects on modifying various wave properties, which are well captured by the present models. However, the time-averaged velocity under wave–current interaction shows small differences with the prescribed current velocity, except in the region between the wave trough and crest.