We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility, aimed at investigating laser–plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion (ICF), that is, laser intensity higher than ${10}^{16}$$\mathrm{W}/{\mathrm{cm}}^2$ impinging on a hot ($T>1$ keV), inhomogeneous and long scalelength pre-formed plasma. Measurements show a significant stimulated Raman scattering (SRS) backscattering ($\sim 4\%{-}20\%$ of laser energy) driven at low plasma densities and no signatures of two-plasmon decay (TPD)/SRS driven at the quarter critical density region. Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles, in conditions where the reflectivity is dominated by the contribution from the most intense speckles, where SRS becomes saturated. Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles. The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation. The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons ($7\!{-}\!12$ keV), which is well reproduced by numerical simulations.
A developing application of laser-driven currents is the generation of magnetic fields of picosecond–nanosecond duration with magnitudes exceeding $B=10~\text{T}$. Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform, quasi-static magnetic fields on the millimetre scale. Here, we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter. Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target. Using this dual-axis platform for proton deflectometry, robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.
Laser–plasma interaction (LPI) at intensities $10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$ is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity ${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$ with a ${\sim}100~\unicode[STIX]{x03BC}\text{m}$ scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (${\sim}4~\text{keV}$) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
This paper provides a summary of recent research connected with the shock ignition (SI) concept of the inertial confinement fusion which was carried out at PALS. In the experiments, Cu planar targets coated with a thin CH layer were used. Two-beam irradiation experiment was applied to investigate the effect of preliminary produced plasma to shock-wave generation. The 1ω or 3ω main beam with a high intensity >1015 W/cm2 generates shock wave, while the other 1ω beam with the intensity below 1014 W/cm2 creates CH pre-plasma simulating the pre-compressed plasma related to SI. Influence of laser wavelength on absorbed energy transfer to shock wave was studied by means of femtosecond interferometry and measuring the crater volume. To characterize the hot electron and ion emission, two-dimensional (2D) Kα-imaging of Cu plasma and grid collector measurements were used. In single 1ω beam experiments energy transport by fast electrons produced by resonant absorption made a significant contribution to shock-wave pressure. However, two-beam experiments with 1ω main beam show that the pre-plasma is strongly degrading the scalelength which leads to decreasing the fast electron energy contribution to shock pressure. In both the single 3ω beam experiments and the two-beam experiments with the 3ω main beam, do not show any clear influence of fast electron transport on shock-wave pressure. The non-monotonic behavior of the scalelength at changing the laser beam focal radius in both presence and absence of pre-plasma reflects the competition of plasma motion and electron heat conduction under the conditions of one-dimensional and 2D plasma expansion at large and small focal radii, respectively.
Treatment with proton-pump inhibitors (PPIs) might be associated with neuropsychological side effects. We examined the association between use of PPIs and depressive symptoms in an elderly population. Mood was assessed by the 30-item Geriatric Depression Scale (GDS) in all 344 inhabitants of Tuscania (Italy) aged 75 years and over, without exclusion criteria; depression was defined by a GDS score ≥11. Use of PPIs was associated with a higher GDS score in linear regression analysis (B = 2.43; 95% CI = 0.49–4.38; p = 0.014) after adjusting; also, use of PPIs was associated with increased adjusted probability of depression in logistic regression (OR = 2.38; 95% CI = 1.02–5.58; p = 0.045). Higher PPIs dosages were associated with increased probability of depression (p for trend = 0.014). This association was independent of the diagnosis of peptic disease, as well as the use of antidepressant medications. No association was found between use of H2-blockers or antacids and the GDS score. Calculation of the population attributable risk indicated that 14% of depression cases could be avoided by withdrawal of PPIs. Use of PPIs might represent a frequent cause of depression in older populations; thus, mood should be routinely assessed in elderly patients on PPIs.
The paper is a continuation of research carried out at Prague Asterix Laser System (PALS) related to the shock ignition (SI) approach in inertial fusion, which was carried out with use of 1ω main laser beam as the main beam generating a shock wave. Two-layer targets were used, consisting of Cu massive planar target coated with a thin polyethylene layer, which, in the case of two-beam irradiation geometry, simulate conditions related to the SI scenario. The investigations presented in this paper are related to the use of 3ω to create ablation pressure for high-power shock wave generation. The interferometric studies of the ablative plasma expansion, complemented by measurements of crater volumes and Kα emission, clearly demonstrate the effect of changing the incident laser intensity due to changing the focal radius on efficiency of laser energy transfer to a shock wave and fast electron emission. The efficiency of the energy transfer increases with the radius of the focused laser beam. The pre-plasma does not significantly change the character of this effect. However, it unambiguously results in the increasing temperature of fast electrons, the total energy of which remains very small (<0.1% of the laser energy). This study shows that the optimal radius from the point of view of 3ω radiation energy transfer to the shock wave is the maximal one used in these experiments and equal to 200 µm that corresponds to the minimal effect of two-dimensional (2D)-expansion. Such a result is typical for the ablation process determined by electron conductivity energy transfer under the conditions of one-dimensional or 2D matter expansion without any appreciable effect due to energy transfer by fast electrons. The 2D simulations based on application of the ALANT-HE code and an analytical model that includes generation and transport of hot electrons has been used to support of experimental data.
The effect of laser intensity on characteristics of the plasma ablated from a low-Z (CH) planar target irradiated by a 250 ps, 0.438 µm laser pulse with the intensity of up to 1016 W/cm2 as well as on parameters of the laser-driven shock generated in the target for various scale-lengths of preformed plasma was investigated at the kilojoule Prague Asterix Laser System (PALS) laser facility. Characteristics of the plasma were measured with the use of 3-frame interferometry, ion diagnostics, an X-ray spectrometer, and Kα imaging. Parameters of the shock generated in a Cl doped CH target by the intense 3ω laser pulse were inferred by numerical hydrodynamic simulations from the measurements of craters produced by the shock in the massive Cu target behind the CH layer. It was found that the pressure of the shock generated in the plastic layer is relatively weakly influenced by the preplasma (the pressure drop due to the preplasma presence is ~10–20%) and at the pulse intensity of ~1016 W/cm2 the maximum pressure reaches ~80–90 Mbar. However, an increase in pressure of the shock with the laser intensity is slower than predicted by theory for a planar shock and the maximum pressure achieved in the experiment is by a factor of ~2 lower than predicted by the theory. Both at the preplasma absence and presence, the laser-to-hot electrons energy conversion efficiency is small, ~1% or below, and the influence of hot electrons on the generated shock is expected to be weak.
This paper reports on properties of a plasma formed by sequential action of two laser beams on a flat target, simulating the conditions of shock-ignited inertial confinement fusion target exposure. The experiments were performed using planar targets consisting of a massive copper (Cu) plate coated with a thin plastic (CH) layer, which was irradiated by the 1ω PALS laser beam (λ = 1.315 μm) at the energy of 250 J. The intensity of the fixed-energy laser beam was scaled by varying the focal spot radius. To imitate shock ignition conditions, the lower-intensity auxiliary 1ω beam created CH-pre-plasma which was irradiated by the main beam with a delay of 1.2 ns, thus generating a shock wave in the massive part of the target. To study the parameters of the plasma treated by the two-beam irradiation of the targets, a set of various diagnostics was applied, namely: (i) Two-channel polaro-interferometric system irradiated by the femtosecond laser (~40 fs), (ii) spectroscopic measurements in the X-ray range, (iii) two-dimensional (2D)-resolved imaging of the Kα line emission from Cu, (iv) measurements of the ion emission by means of ion collectors, and (v) measurements of the volume of craters produced in a massive target providing information on the efficiency of the laser energy transfer to the shock wave. The 2D numerical simulations have been used to support the interpretation of experimental data. The general conclusion is that the fraction of the main laser beam energy deposited into the massive copper at two-beam irradiation decreases in comparison with the case of pre-plasma. The reason is that the pre-formed and expanding plasma deteriorates the efficiency of the energy transfer from the main laser pulse to a solid part of the targets by means of the fast electrons and the wave of an electron thermal conductivity.
To evaluate the functional results obtained after voice therapy in patients with unilateral vocal fold paralysis caused by different aetiologies.
Design:
Prospective analysis of the outcome of unilateral vocal fold paralysis cases treated at our speech and language rehabilitation service from November 2003 to January 2006. Thirty cases underwent behavioural treatment, between two and six weeks after unilateral vocal fold paralysis onset. A multi-dimensional assessment was carried out before, immediately after and six months after treatment.
Results:
After behavioural therapy, the prevalence of complete glottal closure increased significantly (p < 0.05). Subjects' pre-therapy mean values for jitter, shimmer and noise-to-harmonic ratio were statistically significantly different from those taken both immediately and six months after treatment (p < 0.05). The mean values for voice turbulence index significantly improved only six months after therapy (0.08 vs 0.04). At both post-treatment assessments, voice range profile analysis showed a significant decrease of lowest voice frequency and a significant increase of the number of semitones (p < 0.05). Mean values for grade, instability, breathiness, asthenia and voice handicap index scores were significantly decreased both immediately and six months after treatment, compared with pre-treatment values (p < 0.05).
Conclusions:
Early voice therapy may enable significant improvement in vocal function, allowing the patient to avoid surgery.
A new deep drill has been developed within the framework of the European Programme for Ice Coring in Antarctica (EPICA). Several versions of the EPICA drill exist. The version used at Dome Concordia (75˚06'1" S, 123˚23'71" E) was operated with a new electronic control system developed by the Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA) Research Center in Brasimone, Italy. This electronic control system was used for the first time during the 1997/98 Antarctic summer season.
The effects of hospitalization on affective status were assessed by an original protocol in 214 consecutive elderly patients (mean age=78.3+/−5.0 years, range=70–92 years). Psychological decompensation was significantly related to length of stay (p<0.01) and drug use (p<0.05) and unaffected by sex, marital status, prior living place, diagnostic category. Affective status and functional status were directly correlated (p<0.0001), although in 51% of medical patients the affective status worsened or remained unchanged despite improved physical function. Improvement in affective status occurred more frequently in surgical patients (p<0.001) due to psychological improvement following surgery. Physicians providing medical and surgical care for geriatric patients must remain aware of the patients' emotional response to hospitalization and illness, given the accompanying risk for psychological decompensation.
REM (Rapid Eye Mount) is a fully robotized fast slewing telescope equipped with a high throughput Near InfraRed (Z′, J, H, K′) camera (REMIR) and an optical slitless spectrograph (ROSS). A dedicated software for data reduction and software (AQuA) has been developed to extract scientific information from REM images without any human intervent. REM is installed in La Silla (Chile) and dedicated to detect and study the prompt optical/IR afterglow of Gamma Ray Bursts with the ambitious project of discovering objects at extremely high redshift. The synergy between REMIR camera and ROSS makes REM a powerful observing tool for any kind of fast transient phenomena.
Earlier analysis of the Italian population showed patterns of genetic
differentiation that were
interpreted as being the result of population settlements going back to
pre-Roman times. DNA
disease mutations may be a powerful tool in further testing this hypothesis
since the analysis of
diseased individuals can detect variants too rare to be resolved in normal
individuals. We present
data on the relative frequencies of 60 cystic fibrosis (CF) mutations in
Italy and the geographical
distribution of the 12 most frequent CF mutations screened in 3492 CF
chromosomes originating in
13 Italian regions. The 12 most frequent mutations characterize about 73%
of the Italian CF
chromosomes. The most common mutation, ΔF508, has an average frequency
of
51%, followed by
N1303K and G542X, both with average frequencies around 5%. Multivariate
analyses show that the
relative frequencies of CF mutations are heterogeneous among Italian regions,
and that this
heterogeneity is weakly correlated with the geographical pattern of non-DNA
‘classical’ genetic
markers. The northern regions are well differentiated from the central-southern
regions and within
the former group the western and eastern regions are remarkably distinct.
Moreover, Sardinia shows
the presence of mutation T338I, which seems absent in any other European
CF chromosome. The
north-western regions of Italy, characterized by the mutation 1717-1G→A,
were
under Celtic influence, while the north-east regions, characterized by
the
mutations R1162X, 2183AA→G and
7115G→A, were under the influence of the Venetic culture.
The ray solution of Felsenstein's n-allele random selection diffusion process is given for small values of the selection parameters. This solution holds away from, but not near, the boundary of frequency space. The solution is possible only because the coefficients of the associated Jacobi field equations agree uniformly with those for the case of zero selection up to fourth powers in the selection parameters, whilst the covariance of the diffusion has only quadratic dependence.
An axiomatic derivation of the Wright–Fisher–Kimura (wfk) diffusion model for genetic drift is given using a variational principle. This is analogous to the characterization of the standard normal distribution in terms of an isoperimetric problem in the calculus of variations where the integrand is Shannon's information measure. We, on the other hand, give a Fisher-type information-theoretic interpretation of the variational principle largely motivated by the geometric approach to statistical likelihood theory due to S. V. Huzurbazzar, B. R. Rao and A. W. F. Edwards. In our process theory, the Ricci curvature tensor plays the role of information matrix. Ultimately, it is proved to be a normalized matrix of second partial derivates of the pseudodensity associated with the Christoffel velocity field. The proofs use classical projective differential geometry and depend on previous work in this series on the geometry of random drift.
In the present paper a spatially homogeneous distance measure of Edwards and Cavalli-Sforza type is derived for multiple allele random genetic drift with a (possibly vanishing) symmetric mutation field, using the technique of random time substitution. Since the mutation field is of gradient type in gene frequency space, the transformed process is proved to be Brownian motion relative to a new Riemannian geometry and a new time measure. The new geometry is conformally related to spherical geometry of the original process but is not of constant curvature, generally. A formula relating the stationary density of the old and new process is derived and the edge length formula for the new geometry on the n-simplex frequency space is given and analysed.
Stochastic models in population genetics which lead to diffusion equations are considered. A geometric formula for the asymptotic expansions of the fundamental solutions of these equations is presented. Specifically, the random genetic drift process of one-locus theory and the Ohta–Kimura model of two-locus di-allelic systems with linkage are studied. Agreement with the work of Keller and Voronka for the two-allele one-locus case is obtained. For the general n-allele problem, the formulas obtained here are apparently new.
It is demonstrated that standard Brownian motion in the tangent plane at the centroid of frequency space does not well approximate the discrete Wright—Fisher process for more than 2N generations where N is the effective population size. This result is obtained using Wright's concept of negligible mutation rate for the study of systematic evolutionary effects together with Ludwig's notion of the persistence of a dynamical system. This work may be viewed as a mathematical elaboration of a portion of Wright's shifting balance theory of evolution.
A stochastic distance measure is defined for a general diffusion process on a parameter space X. This distance is defined by where (gij) is the inverse of the covariance matrix of the diffusion equation. This permits the study of the geometry associated with a diffusion equation, since the matrix (gij) is the fundamental tensor of the Riemannian space (X, gij), and of a diffusion process in terms of Brownian motion. For the diffusion equation approximation to random drift with n alleles the covariance matrix is that of a multinomial distribution. The resulting stochastic distance is equal to twice the genetic distance as defined by Cavalli-Sforza and Edwards and is a generalization of the angular transformation of Fisher to n alleles. The geometry associated with the diffusion equation for random drift with n alleles is that of a part of an (n − 1)-sphere of radius two. We also show that the diffusion equation for random drift is not spherical Brownian motion, although it is approximated by it near the centroid of frequency space.