We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the dynamics of the leading-edge vortex (LEV) on a rapidly pitching plate with the aim of elucidating the underlying flow physics that dictates the stability and circulation of the LEV. A wide variety of flow conditions is considered in the present study by systematically varying the leading-edge sweep angle (
$\unicode[STIX]{x1D6EC}=0^{\circ }$
,
$11.3^{\circ }$
,
$16.7^{\circ }$
) and the reduced frequency (
$f^{\ast }=0.064{-}0.151$
), while keeping the pitching amplitude and the Reynolds number fixed. Tomographic particle image velocimetry is used to characterise the three-dimensional fluid motion inside the vortex core and its relation to the LEV stability and growth. A series of control volume analyses are performed to quantify the relative importance of the vorticity transport phenomena taking place inside the LEV to the overall vortex development. We show that, near the wing apex where tip effects can be neglected, the vortex develops in a nominally two-dimensional manner, despite the presence of inherently three-dimensional vortex dynamics such as vortex stretching and compression. Furthermore, we demonstrate that the vortex formation time and circulation growth are well-described by the principles of optimal vortex formation number, and that the occurrence of vortex shedding is dictated by the relative energetics of the feeding shear layer and the resulting vortex.
We report on the dynamics of the formation and growth of the leading-edge vortex and the corresponding unsteady aerodynamic torque induced by large-scale flow-induced oscillations of an elastically mounted flat plate. All experiments are performed using a high-bandwidth cyber-physical system, which enables the user to access a wide range of structural dynamics using a feedback control system. A series of two-dimensional particle image velocimetry measurements are carried out to characterize the behaviour of the separated flow structures and its relation to the plate kinematics and unsteady aerodynamic torque generation. By modulating the structural properties of the cyber-physical system, we systematically analyse the formation, strength and separation of the leading-edge vortex, and the dependence on kinematic parameters. We demonstrate that the leading-edge vortex growth and strength scale with the characteristic feeding shear-layer velocity and that a potential flow model using the measured vortex circulation and position can, when coupled with the steady moment of the flat plate, accurately predict the net aerodynamic torque on the plate. Connections to previous results on optimal vortex formation time are also discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.