Background: Automated testing instruments (ATIs) are commonly used by clinical microbiology laboratories to perform antimicrobial susceptibility testing (AST), whereas public health laboratories may use established reference methods such as broth microdilution (BMD). We investigated discrepancies in carbapenem minimum inhibitory concentrations (MICs) among Enterobacteriaceae tested by clinical laboratory ATIs and by reference BMD at the CDC. Methods: During 2016–2018, we conducted laboratory- and population-based surveillance for carbapenem-resistant Enterobacteriaceae (CRE) through the CDC Emerging Infections Program (EIP) sites (10 sites by 2018). We defined an incident case as the first isolation of Enterobacter spp (E. cloacae complex or E. aerogenes), Escherichia coli, Klebsiella pneumoniae, K. oxytoca, or K. variicola resistant to doripenem, ertapenem, imipenem, or meropenem from normally sterile sites or urine identified from a resident of the EIP catchment area in a 30-day period. Cases had isolates that were determined to be carbapenem-resistant by clinical laboratory ATI MICs (MicroScan, BD Phoenix, or VITEK 2) or by other methods, using current Clinical and Laboratory Standards Institute (CLSI) criteria. A convenience sample of these isolates was tested by reference BMD at the CDC according to CLSI guidelines. Results: Overall, 1,787 isolates from 112 clinical laboratories were tested by BMD at the CDC. Of these, clinical laboratory ATI MIC results were available for 1,638 (91.7%); 855 (52.2%) from 71 clinical laboratories did not confirm as CRE at the CDC. Nonconfirming isolates were tested on either a MicroScan (235 of 462; 50.9%), BD Phoenix (249 of 411; 60.6%), or VITEK 2 (371 of 765; 48.5%). Lack of confirmation was most common among E. coli (62.2% of E. coli isolates tested) and Enterobacter spp (61.4% of Enterobacter isolates tested) (Fig. 1A), and among isolates testing resistant to ertapenem by the clinical laboratory ATI (52.1%, Fig. 1B). Of the 1,388 isolates resistant to ertapenem in the clinical laboratory, 1,006 (72.5%) were resistant only to ertapenem. Of the 855 nonconfirming isolates, 638 (74.6%) were resistant only to ertapenem based on clinical laboratory ATI MICs. Conclusions: Nonconfirming isolates were widespread across laboratories and ATIs. Lack of confirmation was most common among E. coli and Enterobacter spp. Among nonconfirming isolates, most were resistant only to ertapenem. These findings may suggest that ATIs overcall resistance to ertapenem or that isolate transport and storage conditions affect ertapenem resistance. Further investigation into this lack of confirmation is needed, and CRE case identification in public health surveillance may need to account for this phenomenon.
Funding: None
Disclosures: None