We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
OBJECTIVES/SPECIFIC AIMS: To evaluate the ability of various techniques to track changes in body fluid volumes before and after a rapid infusion of saline. METHODS/STUDY POPULATION: Eight healthy participants (5M; 3F) completed baseline measurements of 1) total body water using ethanol dilution and bioelectrical impedance analysis (BIA) and 2) blood volume, plasma volume and red blood cell (RBC) volume using carbon monoxide rebreathe technique and I-131 albumin dilution. Subsequently, 30mL saline/kg body weight was administered intravenously over 20 minutes after which BIA and ethanol dilution were repeated. RESULTS/ANTICIPATED RESULTS: On average, 2.29±0.35 L saline was infused with an average increase in net fluid input-output (I/O) of 1.56±0.29 L. BIA underestimated measured I/O by −3.4±7.9%, while ethanol dilution did not demonstrate a measurable change in total body water. Carbon monoxide rebreathe differed from I-131 albumin dilution measurements of blood, plasma and RBC volumes by +0.6±2.8%, −5.4±3.6%, and +11.0±4.7%, respectively. DISCUSSION/SIGNIFICANCE OF IMPACT: BIA is capable of tracking modest changes in total body water. Carbon monoxide rebreathe appears to be a viable alternative for the I-131 albumin dilution technique to determine blood volume. Together, these two techniques may be useful in monitoring fluid status in patients with impaired fluid regulation.
Email your librarian or administrator to recommend adding this to your organisation's collection.