We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exercise stress echocardiography and layer-specific strains are emerging as important tools for cardiac assessment. This study was aimed to evaluate layer-specific strains and torsion parameters during exercise in order to investigate the characteristics of cardiac dysfunction in patients with repaired tetralogy of Fallot and to detect subclinical left ventricular dysfunction.
Materials and Methods:
Thirteen patients with repaired tetralogy of Fallot (median age, 17.3 [interquartile range, 14.5–22.9] years; 6 males) and 13 controls (median age, 28.5 [interquartile range, 27.6–31.6] years; 13 males) underwent echocardiography at rest and during supine exercise. Layer-specific longitudinal strain and circumferential strain of three myocardial layers (endocardium, midmyocardium, and epicardium), torsion, and untwisting rate were measured using two-dimensional speckle-tracking echocardiography.
Results:
Peak endocardial papillary circumferential strain (−21.1 ± 2.6% vs. −25.8 ± 3.8%, p = 0.007), midmyocardial apical circumferential strain (−11.1 ± 4.0% vs. −15.6 ± 3.2%, p = 0.001), epicardial apical circumferential strain (−11.1 ± 4.0% vs. −15.6 ± 3.2%, p = 0.021), and torsion (8.9 ± 6.0 vs. 14.9 ± 4.8 degree, p = 0.021) were significantly lower in the repaired tetralogy of Fallot group than in the control group during exercise, though no significant difference was found between patients and controls at rest.
Conclusions:
Analysis of layer-specific strains and torsion parameters during exercise could detect subclinical left ventricular dysfunction in patients with repaired tetralogy of Fallot, which might reflect potential myocardial damage, at a stage where these parameters have normal values at rest. This finding provides new insight into the mechanisms of cardiac dysfunction in patients with repaired tetralogy of Fallot.
Shortening response time to an emergency call leads to the success of resuscitation by chest compression and defibrillation. However, response by ambulance or fire truck is not fast enough for resuscitation in Japan. In rural areas, response times can be more than 10 minutes. One possible way to shorten the response time is to establish a system of first responders (eg, police officers or firefighters) who are trained appropriately to perform resuscitation. Another possible way is to use a system of Community First Responders (CFRs) who are trained neighbors. At present, there are no call triage protocols to decide if dispatchers should activate CFRs.
Objective
The aim of this study was to determine the predictability to detect if dispatchers should activate CFRs.
Methods
Two CFR call triage protocols (CFR protocol Ver.0 and Ver.1) were established. The predictability of CFR protocols was examined by comparing the paramedic field reports. From the results of sensitivity of CFR protocol, the numbers of annual CFR activations were calculated. All data were collected, prospectively, for four months from October 1, 2012 through January 31, 2013.
Results
The ROC-AUC values appear slightly higher in CFR protocol Ver.1 (0.857; 95% CI, 79.8-91.7) than in CFR protocol Ver.0 (0.847; 95% CI, 79.0-90.3). The number of annual CFR activations is higher in CFR protocol Ver.0 (7.47) than in CFR protocol Ver.1 (5.45).
Conclusion
Two call triage protocols have almost the same predictability as the Medical Priority Dispatch System (MPDS). The study indicates that CFR protocol Ver.1 is better than CFR protocol Ver.0 because of the higher predictability and low number of activations. Also, it indicates that CFRs who are not medical professionals can respond to a patient with cardiac arrest.
NarikawaK, SakamotoT, KubotaK, SuzukawaM, YonekawaC, YamashitaK, ToyokuniY, YasudaY, KobayashiA, IijimaK. Predictability of the Call Triage Protocol to Detect if Dispatchers Should Activate Community First Responders. Prehosp Disaster Med. 2014;29(5):1-5.
The 2011 Great East Japan Earthquake caused major disruptions in the provision of health care, including that for patients with sleep-disordered breathing (SDB) using a nasal continuous positive airway pressure (nCPAP) device. This study investigated the ability of SDB patients to continue using the nCPAP device in the weeks immediately following the earthquake, whether inability to use the nCPAP device led to symptom relapse, and measures that should be taken to prevent disruptions in nCPAP therapy during future disasters.
Hypothesis
If nCPAP devices cannot be used during disasters, SDB patients’ health will be affected negatively.
Methods
Within 14 days of the disaster, 1,047 SDB patients completed a questionnaire that collected data regarding ability to use, duration of inability to use, and reasons for inability to use the nCPAP device; symptom relapse while unable to use the nCPAP device; ability to use the nCPAP device use at evacuation sites; and recommendations for improvement of the nCPAP device.
Results
Of the 1,047 patients, 966 (92.3%) had been unable to use the nCPAP device in the days immediately following the earthquake. The most common reason for inability to use the nCPAP device was power failure, followed by anxiety about sleeping at night due to fear of aftershocks, involvement in disaster-relief activities, loss of the nasal CPAP device, and fear of being unable to wake up in case of an emergency. Among the 966 patients, 242 (25.1%) had experienced relapse of symptoms, the most common of which was excessive daytime sleepiness (EDS), followed by insomnia, headache, irritability, and chest pain.
Conclusion
Developing strategies for the continuation of nCPAP therapy during disasters is important for providing healthy sleeping environments for SDB patients in emergency situations.
MitoF, NishijimaT, SakuraiS, KizawaT, HosokawaK, TakahashiS, SuwabeA, AkasakaH, KobayashiS. Effects of CPAP Treatment Interruption Due to Disasters: Patients with Sleep-disordered Breathing in the Great East Japan Earthquake and Tsunami Area. Prehosp Disaster Med. 2013;28(6):547-555.
We have demonstrated resistance switching using polycrystalline HfO2 film with a Cu top electrode for nonvolatile memory applications and revealed the Cu diffusion into the HfO2 layer during the filament formation process. Resistive switching was clearly observed in the Cu/HfO2/Pt structure by performing a current–voltage measurement. The current step from a high-resistive state to a low-resistive state was of the order of 103–104 Ω, which provided a sufficient on/off ratio for use as a switching device. The filament formation process was investigated by employing hard x-ray photoelectron spectroscopy under bias operation. The application of a bias to the structure reduced the Cu2O state at the interface and the intensity ratio of Cu 2p3/2/Hf 3d5/2, providing evidence of Cu2O reduction and Cu diffusion into the HfO2 layer. These results also provide evidence that the resistance switching of the Cu/HfO2/Pt structure originates in a solid electrolyte (nanoionics model) containing Cu ions.
The mechanism of the fast reversible change between the amorphous and crystalline phases in (GeTe)1−x(Sb2Te3)x (GST) has not yet been fully understood. The crystalline phase has been identified as having a NaCl-type cubic structure with random occupation of the A sites by Ge, Sb and vacancies, and 100% occupation of B sites by Te. This fact calls our attention to a possible close relation to the inherent crystal bonding instability observed for the average five valence electrons (<5>) family. We present here the results of systematic hard X-ray photoemission experiments on GST films with various compositions in both the amorphous and crystalline phases, and discuss that a similar chemical bonding instability does indeed play an essential role in the phase change mechanism in GST. We propose a model for the fast phase change, in which 6 fold to 3 fold transition of p-like bonding play an essential role, in this class of materials.
The effects of oral administration of a lactococcal strain on physiological changes associated with ageing were investigated using senescence-accelerated mice (SAM). SAM develop normally, but then show an early onset and irreversible advancement of senescence. SAMP6 is a SAM strain that develops osteoporosis with ageing. Oral administration of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) to aged SAMP6 mice was associated with reduced bone density loss, a suppression of incidence of skin ulcers and reduced hair loss, compared with controls. Spleen cells from mice fed strain H61 produced more interferon-γ and IL-12 than those from control mice, suggesting that administration of strain H61 altered immune responses. The numbers of viable cells of Bifidobacterium sp., Bacteroides sp. and Enterococcus sp. in faeces were similar for mice fed the strain H61 and control diets, but counts for Staphylococcus sp. were significantly lower (P < 0·05) in mice fed strain H61. Mice fed strain H61 had similar serum concentrations of thiobarbituric acid-reactive substances as in controls, indicating a lack of effect on lipid peroxidation status. Administration of living cells of strain H61 or fermented milk containing strain H61 was also associated with a suppression of incidence of skin ulcers and reduced hair loss. These results indicate that oral administration of strain H61 has the potential to suppress some of the manifestations associated with ageing.
The electronic states of Ba8Ga16Ge30 and Sr8Ga16Ge30 are studied by soft x-ray photoelectron spectroscopy (XPS) at a high-energy facility. In Ba8Ga16Ge30, three bands are resolved in the valence band region. Resonance experiments together with theoretical calculations show that the three band structures in the valence band are mainly constructed by the Ge/Ga 4s and 4p wave functions with little contributions of Ba 5s, 5p and 5d. The valence band of Sr8Ga16Ge30 shows a similar feature to that of Ba8Ga16Ge30. It is clearly shown that the atomic orbitals of Ba and Sr make little hybridization with the orbitals made by the framework polyhedra. This provides the understanding of the thermoelectricity in clathrates, and assists the design in high performance thermoelectric materials in this family.
The striped nano-channel structure (about 10nm in depth) was formed on the NiO film surface by thermal annealing of the film deposited on the sapphire(0001) substrate with periodic straight atomic steps. The interval of each nano-channel was about 100nm in average and well corresponding to the separation of atomic steps on the used sapphire(0001) substrate. Effects of annealing temperature and impurity doping into NiO upon the nanochannel formation were examined in order to control the depth. The depth of nano-channels formed on the alkali-metal(Li or Na) doped NiO films were found to be larger than that of nano-channels on the non-doped NiO films and enlarged with increasing annealing temperature in the range of 500∼900°C. Atomic-scale cross sectional structure of the nano-channel was characterized by transmission electron microscopy with focused on the film/substrate interface.
Recent photoemission studies on heavily boron-doped superconducting diamond films, reporting the electronic structure evolution as a function of boron concentrations, are reviewed. From soft X-ray angle-resolved photoemission spectroscopy, which directly measures electronic band dispersions, depopulation of electrons (or formation of hole pockets) at the top of the valence band were clearly observed. This indicates that the holes at the top of the valence bands are responsible for the metallic properties and hence superconductivity at lower temperatures. Hard X-ray photoemission spectroscopy observed shift of the main C 1s core level and intensity evolution of a lower binding energy additional structure, suggesting chemical potential shift, carrier doping efficiency by boron doping, and possibility of boron-related cluster formations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.