Hydrogenated microcrystalline silicon (μc-Si:H) films are prepared by hot-wire assisted plasma enhanced chemical vapor deposition, which controls the hydrogen radical density by filament temperatures, Tf, without changing other conditions. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is studied using infrared absorption and gas effusion spectroscopies. The hydrogen concentration decreases with increasing Tf. The crystalline volume fraction, Xc, increases with Tf and shows a peak at Tf of 1850 °C. Integrated intensities of the modes near 2000 and 2100 cm-1 decrease with increasing Tf. Integrated intensity of the mode near 880 cm-1 shows almost same tendency of Xc. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is discussed.