We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Zero-dimensional numerical computation of electrical discharge-pumped excimer lasers is extended to a one-dimensional model that is used to study the effects of the density perturbations of the background neutral gas and the nonuniform predischarge (which means preionization in this paper) electron density on the transition of the uniform discharge to the nonuniform prestage state leading to the onset of arc formation (which is not included in this particular model). It was found that a local density depression of 1% or an enhancement of the local electric field of 1% can increase the local energy input by several hundred percent. The initial electron density perturbations, on the other hand, are found to modify the energy input by the same order of magnitude as the initial perturbations.
Highly officient radiative recombination even at room temperature was found at a wavelength of about 1.3 μm in heat-treated Si-doped GaAs. The range of Si concentrations and the condition of heat-treatment to yield this intense luminescence were determined. Excitation spectra of the PL lines suggest that such PL lines are related to pairs of Si-donor and Si- acceptor and such pairs combined with gallium vacancies.
Beam productions from ammonia ice were tried for the first time to obtain proton beams with reasonable purity under the liquid nitrogen cooling. Beam focusings and neutron productions under the target irradiations were tried with water ice. Resonant and optical interferometries were applied to observe the behavior of neutral particles within the anode-cathode gaps.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.