We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
Cervical nodal metastasis is a key prognostic factor in patients with papillary thyroid carcinoma. The role of lymph nodes in papillary thyroid carcinoma management and prognosis remains controversial.
Methods
Level IIb lymph nodes obtained from 44 patients with papillary thyroid carcinoma were histopathologically examined retrospectively. Specimens were classified as ipsilateral or contralateral. The number of dissected nodes and prevalence of level IIb metastasis were compared according to pre-operative clinical nodal stage.
Results
In the node-negative neck, the prevalence of contralateral and ipsilateral IIb nodes was 0 out of 20 and 0 out of 3, respectively. In the node-positive neck, the prevalence of contralateral and ipsilateral IIb nodes was 1 out of 13 (7.70 per cent) and 3 out of 41 (7.32 per cent), respectively. Clinically determined and pathologically confirmed level IIb node negativity were significantly associated. Thirty-four patients (77.3 per cent) developed accessory nerve complications from level IIb dissection.
Conclusion
Level IIb neck dissection for papillary thyroid carcinoma may be required if pre-operative examination reveals multilevel, level IIa or suspicious level IIb metastasis.
Three-dimensional printing is increasingly utilised for congenital heart defect procedural planning. CT or MR datasets are typically used for printing, but similar datasets can be obtained from three-dimensional rotational angiography. We sought to assess the feasibility and accuracy of printing three-dimensional models of CHD from rotational angiography datasets.
Methods:
Retrospective review of CHD catheterisations using rotational angiography was performed, and patient and procedural details were collected. Imaging data from rotational angiography were segmented, cleaned, and printed with polylactic acid on a Dremel® 3D Idea Builder (Dremel, Mount Prospect, IL, USA). Printing time and materials’ costs were captured. CT scans of printed models were compared objectively to the original virtual models. Two independent, non-interventional paediatric cardiologists provided subjective ratings of the quality and accuracy of the printed models.
Results:
Rotational angiography data from 15 catheterisations on vascular structures were printed. Median print time was 3.83 hours, and material costs were $2.84. The CT scans of the printed models highly matched with the original digital models (root mean square for Hausdorff distance 0.013 ± 0.003 mesh units). Independent reviewers correctly described 80 and 87% of the models (p = 0.334) and reported high quality and accuracy (5 versus 5, p = NS; κ = 0.615).
Conclusion:
Imaging data from rotational angiography can be converted into accurate three-dimensional-printed models of CHD. The cost of printing the models was negligible, but the print time was prohibitive for real-time use. As the speed of three-dimensional printing technology increases, novel future applications may allow for printing patient-specific devices based on rotational angiography datasets.
A recent genome-wide association study (GWAS) identified 12 independent loci significantly associated with attention-deficit/hyperactivity disorder (ADHD). Polygenic risk scores (PRS), derived from the GWAS, can be used to assess genetic overlap between ADHD and other traits. Using ADHD samples from several international sites, we derived PRS for ADHD from the recent GWAS to test whether genetic variants that contribute to ADHD also influence two cognitive functions that show strong association with ADHD: attention regulation and response inhibition, captured by reaction time variability (RTV) and commission errors (CE).
Methods
The discovery GWAS included 19 099 ADHD cases and 34 194 control participants. The combined target sample included 845 people with ADHD (age: 8–40 years). RTV and CE were available from reaction time and response inhibition tasks. ADHD PRS were calculated from the GWAS using a leave-one-study-out approach. Regression analyses were run to investigate whether ADHD PRS were associated with CE and RTV. Results across sites were combined via random effect meta-analyses.
Results
When combining the studies in meta-analyses, results were significant for RTV (R2 = 0.011, β = 0.088, p = 0.02) but not for CE (R2 = 0.011, β = 0.013, p = 0.732). No significant association was found between ADHD PRS and RTV or CE in any sample individually (p > 0.10).
Conclusions
We detected a significant association between PRS for ADHD and RTV (but not CE) in individuals with ADHD, suggesting that common genetic risk variants for ADHD influence attention regulation.
This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to COVID-19 with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplemental materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.
We present experimental data providing evidence for the formation of transient (${\sim }20\ \mathrm {\mu }\textrm {s}$) plasmas that are simultaneously weakly magnetized (i.e. Hall magnetization parameter $\omega \tau > 1$) and dominated by thermal pressure (i.e. ratio of thermal-to-magnetic pressure $\beta > 1$). Particle collisional mean free paths are an appreciable fraction of the overall system size. These plasmas are formed via the head-on merging of two plasmas launched by magnetized coaxial guns. The ratio $\lambda _{\textrm {gun}}=\mu _0 I_{\textrm {gun}}/\psi _{\textrm {gun}}$ of gun current $I_{\textrm {gun}}$ to applied magnetic flux $\psi _{\textrm {gun}}$ is an experimental knob for exploring the parameter space of $\beta$ and $\omega \tau$. These experiments were conducted on the Big Red Ball at the Wisconsin Plasma Physics Laboratory. The transient formation of such plasmas can potentially open up new regimes for the laboratory study of weakly collisional, magnetized, high-$\beta$ plasma physics; processes relevant to astrophysical objects and phenomena; and novel magnetized plasma targets for magneto-inertial fusion.
The past few decades have seen the burgeoning of wide-field, high-cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy; however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO) whose primary science objective is the optical follow-up of gravitational wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near-real time to fully exploit the time domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this ‘off-the-shelf’ pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to subpixel levels, and that measured L-band photometries are accurate to $\sim50$ mmag at $m_L\sim16$ and $\sim200$ mmag at $m_L\sim18$. These values compare favourably to those obtained using GOTO’s primary, in-house pipeline, gotophoto, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic ‘obs package’ that others can build upon, should they wish to use the LSST Science Pipelines to process data from other facilities.
It is important to understand the temporal trend of the paediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load to estimate the transmission potential of children in schools and communities. We determined the differences in SARS-CoV-2 viral load dynamics between nasopharyngeal samples of infected asymptomatic and symptomatic children. Serial cycle threshold values of SARS-CoV-2 from the nasopharynx of a cohort of infected children were collected for analysis. Among 17 infected children, 10 (58.8%) were symptomatic. Symptomatic children, when compared to asymptomatic children, had higher viral loads (mean cycle threshold on day 7 of illness 28.6 vs. 36.7, P = 0.02). Peak SARS-CoV-2 viral loads occurred around day 2 of illness in infected children. Although we were unable to directly demonstrate infectivity, the detection of significant amount of virus in the upper airway of asymptomatic children suggest that they have the potential to shed and transmit SARS-CoV-2. Our study highlights the importance of contact tracing and screening for SARS-CoV-2 in children with epidemiological risk factors regardless of their symptom status, in order to improve containment of the virus in the community, including educational settings.
Arctic mining has a bad reputation because the extractive industry is often responsible for a suite of environmental problems. Yet, few studies explore the gap between untouched tundra and messy megaproject from a historical perspective. Our paper focuses on Advent City as a case study of the emergence of coal mining in Svalbard (Norway) coupled with the onset of mining-related environmental change. After short but intensive human activity (1904–1908), the ecosystem had a century to respond, and we observe a lasting impact on the flora in particular. With interdisciplinary contributions from historical archaeology, archaeozoology, archaeobotany and botany, supplemented by stable isotope analysis, we examine 1) which human activities initially asserted pressure on the Arctic environment, 2) whether the miners at Advent City were “eco-conscious,” for example whether they showed concern for the environment and 3) how the local ecosystem reacted after mine closure and site abandonment. Among the remains of typical mining infrastructure, we prioritised localities that revealed the subtleties of long-term anthropogenic impact. Significant pressure resulted from landscape modifications, the import of non-native animals and plants, hunting and fowling, and the indiscriminate disposal of waste material. Where it was possible to identify individual inhabitants, these shared an economic attitude of waste not, want not, but they did not hold the environment in high regard. Ground clearances, animal dung and waste dumps continue to have an effect after a hundred years. The anthropogenic interference with the fell field led to habitat creation, especially for vascular plants. The vegetation cover and biodiversity were high, but we recorded no exotic or threatened plant species. Impacted localities generally showed a reduction of the natural patchiness of plant communities, and highly eutrophic conditions were unsuitable for liverworts and lichens. Supplementary isotopic analysis of animal bones added data to the marine reservoir offset in Svalbard underlining the far-reaching potential of our multi-proxy approach. We conclude that although damaging human–environment interactions formerly took place at Advent City, these were limited and primarily left the visual impact of the ruins. The fell field is such a dynamic area that the subtle anthropogenic effects on the local tundra may soon be lost. The fauna and flora may not recover to what they were before the miners arrived, but they will continue to respond to new post-industrial circumstances.
There is compelling evidence for gradient effects of household income on school readiness. Potential mechanisms are described, yet the growth curve trajectory of maternal mental health in a child's early life has not been thoroughly investigated. We aimed to examine the relationships between household incomes, maternal mental health trajectories from antenatal to the postnatal period, and school readiness.
Methods
Prospective data from 505 mother–child dyads in a birth cohort in Singapore were used, including household income, repeated measures of maternal mental health from pregnancy to 2-years postpartum, and a range of child behavioural, socio-emotional and cognitive outcomes from 2 to 6 years of age. Antenatal mental health and its trajectory were tested as mediators in the latent growth curve models.
Results
Household income was a robust predictor of antenatal maternal mental health and all child outcomes. Between children from the bottom and top household income quartiles, four dimensions of school readiness skills differed by a range of 0.52 (95% Cl: 0.23, 0.67) to 1.21 s.d. (95% CI: 1.02, 1.40). Thirty-eight percent of pregnant mothers in this cohort were found to have perinatal depressive and anxiety symptoms in the subclinical and clinical ranges. Poorer school readiness skills were found in children of these mothers when compared to those of mothers with little or no symptoms. After adjustment of unmeasured confounding on the indirect effect, antenatal maternal mental health provided a robust mediating path between household income and multiple school readiness outcomes (χ2 126.05, df 63, p < 0.001; RMSEA = 0.031, CFI = 0.980, SRMR = 0.034).
Conclusions
Pregnant mothers with mental health symptoms, particularly those from economically-challenged households, are potential targets for intervention to level the playing field of their children.
In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector (VISARs). Our measurements show that for the pressures obtained in diamond (between 3 and 9 Mbar), the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.
When the Interagency Standing Committee (IASC) adopted the composite term mental health and psychosocial support (MHPSS) and published its guidelines for MHPSS in emergency settings in 2007, it aimed to build consensus and strengthen coordination among relevant humanitarian actors. The term MHPSS offered an inclusive tent by welcoming the different terminologies, explanatory models and intervention methods of diverse actors across several humanitarian sectors (e.g., health, protection, education, nutrition). Since its introduction, the term has become well-established within the global humanitarian system. However, it has also been critiqued for papering over substantive differences in the intervention priorities and conceptual frameworks that inform the wide range of interventions described as MHPSS. Our aims are to clarify those conceptual frameworks, to argue for their essential complementarity and to illustrate the perils of failing to adequately consider the causal models and theories of change that underlie our interventions.
Methods
We describe the historical backdrop against which the term MHPSS and the IASC guidelines were developed, as well as their impact on improving relations and coordination among different aid sectors. We consider the conceptual fuzziness in the field of MHPSS and the lack of clear articulation of the different conceptual frameworks that guide interventions. We describe the explanatory models and intervention approaches of two primary frameworks within MHPSS, which we label clinical and social-environmental. Using the examples of intimate partner violence and compromised parenting in humanitarian settings, we illustrate the complementarity of these two frameworks, as well as the challenges that can arise when either framework is inappropriately applied.
Results
Clinical interventions prioritise the role of intrapersonal variables, biological and/or psychological, as mediators of change in the treatment of distress. Social-environmental interventions emphasise the role of social determinants of distress and target factors in the social and material environments in order to lower distress and increase resilience in the face of adversity. Both approaches play a critical role in humanitarian settings; however, the rationale for adopting one or the other approach is commonly insufficiently articulated and should be based on a thorough assessment of causal processes at multiple levels of the social ecology.
Conclusions
Greater attention to the ‘why’ of our intervention choices and more explicit articulation of the causal models and theories of change that underlie those decisions (i.e., the ‘how’), may strengthen intervention effects and minimise the risk of applying the inappropriate framework and actions to a particular problem.
We present the first results obtained from an extensive study of eclipsing binary (EB) system candidates recently detected in the VISTA Variables in the Vía Láctea (VVV) near-infrared (NIR) Survey. We analyse the VVV tile d040 in the southern part of the Galactic disc wherein the interstellar reddening is comparatively low, which makes it possible to detect hundreds of new EB candidates. We present here the light curves and the determination of the geometric and physical parameters of the best candidates found in this ‘NIR window’, including 37 contact, 50 detached, and 13 semi-detached EB systems. We infer that the studied systems have an average of the
$K_s$
amplitudes of
$0.8$
mag and a median period of 1.22 days where, in general, contact binaries have shorter periods. Using the ‘Physics Of Eclipsing Binaries’ (PHOEBE) interactive interface, which is based on the Wilson and Devinney code, we find that the studied systems have low eccentricities. The studied EBs present mean values of about 5 700 and 4 900 K for the
$T_1$
and
$T_2$
components, respectively. The mean mass ratio (q) for the contact EB stars is
$\sim$
0.44. This new galactic disk sample is a first look at the massive study of NIR EB systems.
There is increasing evidence for the health benefits of dietary nitrates including lowering blood pressure and enhancing cardiovascular health. Although commensal oral bacteria play an important role in converting dietary nitrate to nitrite, very little is known about the potential role of these bacteria in blood pressure regulation and maintenance of vascular tone. The main purpose of this review is to present the current evidence on the involvement of the oral microbiome in mediating the beneficial effects of dietary nitrate on vascular function and to identify sources of inter-individual differences in bacterial composition. A systematic approach was used to identify the relevant articles published on PubMed and Web of Science in English from January 1950 until September 2019 examining the effects of dietary nitrate on oral microbiome composition and association with blood pressure and vascular tone. To date, only a limited number of studies have been conducted, with nine in human subjects and three in animals focusing mainly on blood pressure. In general, elimination of oral bacteria with use of a chlorhexidine-based antiseptic mouthwash reduced the conversion of nitrate to nitrite and was accompanied in some studies by an increase in blood pressure in normotensive subjects. In conclusion, our findings suggest that oral bacteria may play an important role in mediating the beneficial effects of nitrate-rich foods on blood pressure. Further human intervention studies assessing the potential effects of dietary nitrate on oral bacteria composition and relationship to real-time measures of vascular function are needed, particularly in individuals with hypertension and those at risk of developing CVD.
Susceptibility to infection such as SARS-CoV-2 may be influenced by host genotype. TwinsUK volunteers (n = 3261) completing the C-19 COVID-19 symptom tracker app allowed classical twin studies of COVID-19 symptoms, including predicted COVID-19, a symptom-based algorithm to predict true infection, derived from app users tested for SARS-CoV-2. We found heritability of 49% (32−64%) for delirium; 34% (20−47%) for diarrhea; 31% (8−52%) for fatigue; 19% (0−38%) for anosmia; 46% (31−60%) for skipped meals and 31% (11−48%) for predicted COVID-19. Heritability estimates were not affected by cohabiting or by social deprivation. The results suggest the importance of host genetics in the risk of clinical manifestations of COVID-19 and provide grounds for planning genome-wide association studies to establish specific genes involved in viral infectivity and the host immune response.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
Optical tracking systems typically trade off between astrometric precision and field of view. In this work, we showcase a networked approach to optical tracking using very wide field-of-view imagers that have relatively low astrometric precision on the scheduled OSIRIS-REx slingshot manoeuvre around Earth on 22 Sep 2017. As part of a trajectory designed to get OSIRIS-REx to NEO 101955 Bennu, this flyby event was viewed from 13 remote sensors spread across Australia and New Zealand to promote triangulatable observations. Each observatory in this portable network was constructed to be as lightweight and portable as possible, with hardware based off the successful design of the Desert Fireball Network. Over a 4-h collection window, we gathered 15 439 images of the night sky in the predicted direction of the OSIRIS-REx spacecraft. Using a specially developed streak detection and orbit determination data pipeline, we detected 2 090 line-of-sight observations. Our fitted orbit was determined to be within about 10 km of orbital telemetry along the observed 109 262 km length of OSIRIS-REx trajectory, and thus demonstrating the impressive capability of a networked approach to Space Surveillance and Tracking.
We describe here efforts to create and study magnetized electron–positron pair plasmas, the existence of which in astrophysical environments is well-established. Laboratory incarnations of such systems are becoming ever more possible due to novel approaches and techniques in plasma, beam and laser physics. Traditional magnetized plasmas studied to date, both in nature and in the laboratory, exhibit a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stem to a large degree from the difference in mass between the positively and the negatively charged species: the ions and the electrons. The mass symmetry of pair plasmas, on the other hand, results in unique behaviour, a topic that has been intensively studied theoretically and numerically for decades, but experimental studies are still in the early stages of development. A levitated dipole device is now under construction to study magnetized low-energy, short-Debye-length electron–positron plasmas; this experiment, as well as a stellarator device that is in the planning stage, will be fuelled by a reactor-based positron source and make use of state-of-the-art positron cooling and storage techniques. Relativistic pair plasmas with very different parameters will be created using pair production resulting from intense laser–matter interactions and will be confined in a high-field mirror configuration. We highlight the differences between and similarities among these approaches, and discuss the unique physics insights that can be gained by these studies.