We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The catostylid jellyfish, Crambionella annandalei was originally described by Rao (1932) based on a preserved specimen collected from the Andaman Sea. Since then, no detailed taxonomic studies have been conducted and the species is often misidentified. Here, we provide a detailed morphological re-description of C. annandalei from fresh material collected at a variety of locations along the east coast of India. The species can be distinguished from its congeners by a combination of morphological characters, the most important of which are the proportion of terminal club length to oral arm length (0.48 ± 0.031), the proportion of the distal portion of the oral arm to naked proximal portion (7.25 ± 0.268) and the body colour. The occurrence of intra-specific colour variation in fresh specimens was also observed in the present study.
Background: Since January 1, 2016 2358 people have died from opioid poisoning in Alberta. Buprenorphine/naloxone (bup/nal) is the recommended first line treatment for opioid use disorder (OUD) and this treatment can be initiated in emergency departments and urgent care centres (EDs). Aim Statement: This project aims to spread a quality improvement intervention to all 107 adult EDs in Alberta by March 31, 2020. The intervention supports clinicians to initiate bup/nal for eligible individuals and provide rapid referrals to OUD treatment clinics. Measures & Design: Local ED teams were identified (administrators, clinical nurse educators, physicians and, where available, pharmacists and social workers). Local teams were supported by a provincial project team (project manager, consultant, and five physician leads) through a multi-faceted implementation process using provincial order sets, clinician education products, and patient-facing information. We used administrative ED and pharmacy data to track the number of visits where bup/nal was given in ED, and whether discharged patients continued to fill any opioid agonist treatment (OAT) prescription 30 days after their index ED visit. OUD clinics reported the number of referrals received from EDs and the number attending their first appointment. Patient safety event reports were tracked to identify any unintended negative impacts. Evaluation/Results: We report data from May 15, 2018 (program start) to September 31, 2019. Forty-nine EDs (46% of 107) implemented the program and 22 (45% of 49) reported evaluation data. There were 5385 opioid-related visits to reporting ED sites after program adoption. Bup/nal was given during 832 ED visits (663 unique patients): 7 visits in the 1st quarter the program operated, 55 in the 2nd, 74 in the 3rd, 143 in the 4th, 294 in the 5th, and 255 in the 6th. Among 505 unique discharged patients with 30 day follow up data available 319 (63%) continued to fill any OAT prescription after receiving bup/nal in ED. 16 (70%) of 23 community clinics provided data. EDs referred patients to these clinics 440 times, and 236 referrals (54%) attended their first follow-up appointment. Available data may under-report program impact. 5 patient safety events have been reported, with no harm or minimal harm to the patient. Discussion/Impact: Results demonstrate effective spread and uptake of a standardized provincial ED based early medical intervention program for patients who live with OUD.
While the burden of dementia is increasing in low- and middle-income countries, there is a low rate of diagnosis and paucity of research in these regions. A major challenge to study dementia is the limited availability of standardised diagnostic tools for use in populations with linguistic and educational diversity. The objectives of the study were to develop a standardised and comprehensive neurocognitive test battery to diagnose dementia and mild cognitive impairment (MCI) due to varied etiologies, across different languages and educational levels in India, to facilitate research efforts in diverse settings.
Methods:
A multidisciplinary expert group formed by Indian Council of Medical Research (ICMR) collaborated towards adapting and validating a neurocognitive test battery, that is, the ICMR Neurocognitive Tool Box (ICMR-NCTB) in five Indian languages (Hindi, Bengali, Telugu, Kannada, and Malayalam), for illiterates and literates, to standardise diagnosis of dementia and MCI in India.
Results:
Following a review of existing international and national efforts at standardising dementia diagnosis, the ICMR-NCTB was developed and adapted to the Indian setting of sociolinguistic diversity. The battery consisted of tests of cognition, behaviour, and functional activities. A uniform protocol for diagnosis of normal cognition, MCI, and dementia due to neurodegenerative diseases and stroke was followed in six centres. A systematic plan for validating the ICMR-NCTB and establishing cut-off values in a diverse multicentric cohort was developed.
Conclusions:
A key outcome was the development of a comprehensive diagnostic tool for diagnosis of dementia and MCI due to varied etiologies, in the diverse socio-demographic setting of India.
Field experiments were carried out in order to investigate if brown manuring (BM) using Sesbania plants can be used to control weeds in maize, especially Cyperus rotundus (Experiment I), and further to optimize the BM technology through appropriate Sesbania seed rate (S), 2,4-D application time (T) and dose (D) (Experiment II). Each BM treatment received a pre-emergence application of pendimethalin 1.0 kg a.i./ha. Experiment I showed that the BM practice using 15 kg/ha Sesbania seed and 2,4-D 0.50 kg a.i./ha applied at 25 DAS led to better control of weeds, especially C. rotundus and higher maize grain yield. Further optimization studies (Experiment II) indicated that among the factors S, T and D, the BM combination S~25 kg/ha, D~0.50 kg a.i./ha and T~25 DAS (i.e. S25T25D0.50) resulted in lowest weed density (3.1/m2) and dry weight (3.8 g/m2) and highest weed control index (89.2%) at 60 days after sowing (DAS) which was at par with another BM practice S15T25D0.50. However, the later BM combination led to significantly higher maize productivity (5.25 t/ha) and profitability (net returns (NR) $878/ha), which were 103 and 280% higher, respectively, than the weedy check (WC). The Sesbania seed rate S~15 kg/ha gave 7% higher maize grain yield and 12% higher NR than its corresponding level S~25 kg/ha. Therefore, Sesbania BM with 15 kg seeds/ha and 2,4-D at 0.50 kg a.i/ha applied at 25 DAS can be recommended for effective and eco-friendly weed management in maize, which would provide higher maize grain yield and enhance farmers' profitability.
In this paper, longitudinal and lateral-directional aerodynamic characterisation of the Cropped Delta Reflex Wing (CDRW) configuration–based unmanned aerial vehicle is carried out by means of full-scale static wind-tunnel tests followed by full-scale flight testing. A predecided set of longitudinal and lateral/directional manoeuvres is performed to acquire the respective flight data, using a dedicated onboard flight data acquisition system. The compatibility of the acquired dynamics is quantified, in terms of scale factors and biases of the measured variables, using Kinematic consistency check. Maximum likelihood (ML), least squares and newly emerging neural Gauss–Newton (NGN) methods were implemented for a wing-alone delta configuration, mainly to capture the dynamic derivatives for both longitudinal and lateral directional cases. Estimated damping and weak dynamic derivatives, which are in general challenging to capture for a wing alone configuration, are consistent using ML and NGN methods. Validation of the estimated parameters with aerodynamic model is performed by proof-of-match exercise and are presented therein.
Terminal heat stress leads to sizeable yield loss in late-sown wheat in tropical environments. Several synthetic compounds are known to counteract plant stress emanating from abiotic factors. A field experiment was conducted in Sabour (eastern India) during 2013–2016 to investigate the field efficacy of two synthetic compounds, calcium chloride (CaCl2) and arginine, for improving grain yield of two contrasting wheat cultivars (DBW 14 and K 307) facing terminal heat stress. For this, foliar spray of 18.0 mM CaCl2 at booting (CCB) or anthesis (CCA), 9.0 mM CaCl2 at both booting and anthesis (CCB+A), 2.5 mM arginine at booting (ARGB) or anthesis (ARGA) and 1.25 mM arginine at both booting and anthesis (ARGB+A) treatments along with no-spray and water-spray treatments were evaluated in late-sown wheat. The highest grain yield was recorded in treatment CCB+A, followed by CCA and ARGB+A. However, the effect of these compounds was marginal on grain yield when applied only at the booting stage. Grains/ear and thousand-grain weight were found to be the critical determinants for yield in late-sown wheat. During the anthesis to grain filling period, flag-leaf chlorophyll degradation and increase in relative permeability in no-spray treatment were 34–36% and 29–52%, respectively, but these values were reduced considerably in CCB+A treatment followed CCA. Thus, foliar spray of 9.0 mM CaCl2 both at booting and anthesis stages may be recommended for alleviating the negative impacts of terminal heat stress in late-sown wheat and improving its productivity (>13%).
Background: Buprenorphine/naloxone (bup/nal) is a partial opioid agonist/antagonist and recommended first line treatment for opioid use disorder (OUD). Emergency departments (EDs) are a key point of contact with the healthcare system for patients living with OUD. Aim Statement: We implemented a multi-disciplinary quality improvement project to screen patients for OUD, initiate bup/nal for eligible individuals, and provide rapid next business day walk-in referrals to addiction clinics in the community. Measures & Design: From May to September 2018, our team worked with three ED sites and three addiction clinics to pilot the program. Implementation involved alignment with regulatory requirements, physician education, coordination with pharmacy to ensure in-ED medication access, and nurse education. The project is supported by a full-time project manager, data analyst, operations leaders, physician champions, provincial pharmacy, and the Emergency Strategic Clinical Network leadership team. For our pilot, our evaluation objective was to determine the degree to which our initiation and referral pathway was being utilized. We used administrative data to track the number of patients given bup/nal in ED, their demographics and whether they continued to fill bup/nal prescriptions 30 days after their ED visit. Addiction clinics reported both the number of patients referred to them and the number of patients attending their referral. Evaluation/Results: Administrative data shows 568 opioid-related visits to ED pilot sites during the pilot phase. Bup/nal was given to 60 unique patients in the ED during 66 unique visits. There were 32 (53%) male patients and 28 (47%) female patients. Median patient age was 34 (range: 21 to 79). ED visits where bup/nal was given had a median length of stay of 6 hours 57 minutes (IQR: 6 hours 20 minutes) and Canadian Triage Acuity Scores as follows: Level 1 – 1 (2%), Level 2 – 21 (32%), Level 3 – 32 (48%), Level 4 – 11 (17%), Level 5 – 1 (2%). 51 (77%) of these visits led to discharge. 24 (47%) discharged patients given bup/nal in ED continued to fill bup/nal prescriptions 30 days after their index ED visit. EDs also referred 37 patients with OUD to the 3 community clinics, and 16 of those individuals (43%) attended their first follow-up appointment. Discussion/Impact: Our pilot project demonstrates that with dedicated resources and broad institutional support, ED patients with OUD can be appropriately initiated on bup/nal and referred to community care.
The detection of a neutron star merger by the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo gravitational wave detectors, and the subsequent detection of an electromagnetic counterpart have opened a new era of transient astronomy. With upgrades to the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo detectors and new detectors coming online in Japan and India, neutron star mergers will be detected at a higher rate in the future, starting with the O3 observing run which will begin in early 2019. The detection of electromagnetic emission from these mergers provides vital information about merger parameters and allows independent measurement of the Hubble constant. The Australian Square Kilometre Array Pathfinder is expected to become fully operational in early 2019, and its 30 deg2 field of view will enable us to rapidly survey large areas of sky. In this work we explore prospects for detecting both prompt and long-term radio emission from neutron star mergers with Australian Square Kilometre Array Pathfinder and determine an observing strategy that optimises the use of telescope time. We investigate different strategies to tile the sky with telescope pointings in order to detect radio counterparts with limited observing time, using 475 simulated gravitational wave events. Our results show a significant improvement in observing efficiency when compared with a naïve strategy of covering the entire localisation above some confidence threshold, even when achieving the same total probability covered.
The problem of unsteady boundary layer flow of a nanofluid over a stretching surface is studied. Heat transfer due to melting is analyzed. Using a similarity transformation the governing coupled nonlinear partial differential equations of the model are reduced to a system of nonlinear ordinary differential equations, and then solved numerically by a Runge-Kutta method with a shooting technique. Dual solutions are observed numerically and their characteristics are analyzed. The effects of the pertinent parameters such as the acceleration parameter, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number and the Lewis number on the velocity, temperature and concentration fields are discussed. Also the effects of these parameters on the skin friction coefficient, the Nusselt number and the Sherwood number are analyzed through graphs. It is observed that the melting phenomenon has a significant effect on the flow, heat and mass transfer characteristics.
Crystal structure analysis of a pyrazole carboxylic acid derivative, 5-(trifluoromethyl)-1-phenyl-1H-pyrazole-4-carboxylic acid (1) has been carried out from laboratory powder X-ray diffraction data. The crystal packing in the pyrazole carboxylic acid derivative exhibits an interplay of strong O–H…O, C–H…N and C–H…F hydrogen bonds to generate a three-dimensional molecular packing via the formation of R22(8) and R22(9) rings. Molecular electrostatic potential calculations indicated that carbonyl oxygen, pyrazole nitrogen and fluorine atoms to be the strongest acceptors. The relative contribution of different interactions to the Hirshfeld surface of pyrazole carboxylic acid and a few related structures retrieved from CSD indicates that H…H, N…H and O…H interactions can account for almost 70% of the Hirsfeld surface area in these compounds.
Dust vortices with a void at the centre are reported in this paper. The role of the spatial variation of the plasma potential in the rotation of dust particles is studied in a parallel plate glow discharge plasma. Probe measurements reveal the existence of a local potential minimum in the region of formation of the dust vortex. The minimum in the potential well attracts positively charged ions, while it repels the negatively charged dust particles. Dust rotation is caused by the interplay of the two oppositely directed ion drag and Coulomb forces. The balance between these two forces is found to play a major role in the radial confinement of the dust particles above the cathode surface. Evolution of the dust vortex is studied by increasing the discharge current from 15 to 20 mA. The local minimum of the potential profile is found to coincide with the location of the dust vortex for both values of discharge currents. Additionally, it is found that the size of the dust vortex as well as the void at the centre increases with the discharge current.
In this paper, a Gaussian process regression (GPR)-based novel method is proposed for non-linear aerodynamic modelling of the aircraft using flight data. This data-driven regression approach uses the kernel-based probabilistic model to predict the non-linearity. The efficacy of this method is examined and validated by estimating force and moment coefficients using research aircraft flight data. Estimated coefficients of aerodynamic force and moment using GPR method are compared with the estimated coefficients using maximum-likelihood estimation (MLE) method. Estimated coefficients from the GPR method are statistically analysed and found to be at par with estimated coefficients from MLE, which is popularly used as a conventional method. GPR approach does not require to solve the complex equations of motion. GPR further can be directed for the generalised applications in the area of aeroelasticity, load estimation, and optimisation.
The current research paper describes the lateral-directional parameter estimation from flight data of a miniature Unmanned Aerial Vehicle (UAV) using Maximum Likelihood (ML), and Neural-Gauss-Newton (NGN) methods. An unmanned configuration with a cropped delta planform and thin rectangular cross-section has been designed, fabricated and instrumented. Exhaustive full-scale wind-tunnel tests were performed on the UAV to extract the form of aerodynamic model that has to be postulated a priori for parameter estimation. Rigorous flight tests have been performed to acquire the flight data for several prescribed manoeuvres. Four sets of compatible flight data have been used to carry out parameter estimation using classical ML and neural-network-based NGN methods. It is observed that the estimated parameters are consistent and the lower values of the Cramer-Rao bound for the corresponding estimates have shown significant confidence in the obtained parameters. Furthermore, to validate the aerodynamic model used and to enhance the confidence in the estimated parameters, a proof of match exercise has been carried out.
Artificial Neural Network based Nonlinear Autoregressive Model is designed to reconstruct and predict Forbush Decrease (FD) Data obtained from Izmiran, Russia. Result indicates that the model seems adequate for short term prediction of the FD data.
A new species, Gentiana arunii D.Maity, S.K.Dey, J.Ghosh & Midday, from alpine pasture in Sikkim Himalaya is described and illustrated, and placed in Gentiana section Chondrophyllae Bunge. The new species is compared morphologically with two related taxa, Gentiana glabriuscula T.N.Ho and Gentiana pluviarum W.W.Sm. subsp. subtilis (Harry Sm.) T.N.Ho.
Measurements of local plasma parameters in dusty plasma are crucial for understanding
the physics issues related to such systems. The Langmuir probe, a small electrode
immersed in the plasma, provides such measurements. However, designing of a Langmuir
probe system in a dusty plasma environment demands special consideration. First, the
probe has to be miniaturized enough so that its perturbation on the ambient dust
structure is minimal. At the same time, the probe dimensions must be such that a
well-defined theory exists for interpretation of its characteristics. The associated
instrumentation must also support the measurement of current collected by the probe
with high signal to noise ratio. The most important consideration, of course, comes
from the fact that the probes are prone to dust contamination, as the dust particles
tend to stick to the probe surface and alter the current collecting area in
unpredictable ways. This article describes the design and operation of a Langmuir
probe system that resolves these challenging issues in dusty plasma. In doing so,
first, different theories that are used to interpret the probe characteristics in
collisionless as well as in collisional regimes are discussed, with special emphasis
on application. The critical issues associated with the current–voltage
characteristics of Langmuir probe obtained in different operating regimes are
discussed. Then, an algorithm for processing these characteristics efficiently in
presence of ion-neutral collisions in the probe sheath is presented.