We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dynamic local structural change of Pd nanoparticles on alumina surface during hydrogen absorption process was directly observed by x-ray absorption fine structure spectroscopy with dispersive mode. Main four parameters of x-ray absorption spectroscopy were determined even in the case of 50 Hz observation. It is clearly revealed that Pd nanoparticles directly change to the hydride phase in 50 ms at 200 kPa of hydrogen pressure. Although large lattice expansion was observed, significant structural distortion was not investigated in the results of the change of Debye-Waller factor.
CeO2 thin films were irradiated with 200MeV Xe ions. Effects of the irradiation were studied by using Extended X-ray Absorption Fine Structure (EXAFS) measurement at SPring8 synchrotron radiation facility. EXAFS spectra for the irradiated thin films near the Ce K-edge show that the coordination number for oxygen atoms around Ce atom decreases and that the Ce-O Debye-Waller factor increases by the irradiation. The atomic distance between oxygen atom and Ce atom does not vary within the accuracy of EXAFS measurement. The effect of high density electronic excitation on the structure of CeO2 is discussed.
Surface superstructures (reconstructed structures) have been observed by many authors. However, it is not easy to confirm that a superstructure does exist at an interface between two solid layers. The present paper reports a direct observation, by a grazing incidence x-ray diffraction technique with use of synchrotron radiation, of superstructures at the interface. Firstly, the boron-induced R30° reconstruction at the Si interface has been investigated. At the a Si/Si(111) interface, boron atoms at 1/3 ML are substituted for silicon atoms, thus forming a R30° lattice. Even at the interface between a solid phase epitaxial Si(111) layer and a Si(111) substrate, the boron-induced R30° reconstruction has been also observed. Secondly, SiO2/Si(100)-2×l interfacial superstructures have been investigated. Interfacial superstructures have been only observed in the samples of which SiO2 layers have been deposited with a molecular beam deposition method. Finally, the interfaces of MOCVD-grown AIN/GaAs(100) have been shown to have 1×4 and 1×6 superstructures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.