We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interdisciplinary academic teams perform better when competent in teamwork; however, there is a lack of best practices of how to introduce and facilitate the development of effective learning and functioning within these teams in academic environments.
Methods:
To close this gap, we tailored, implemented, and evaluated team science training in the year-long Engineering Innovation in Health (EIH) program at the University of Washington (UW), a project-based course in which engineering students across several disciplines partner with health professionals to develop technical solutions to clinical and translational health challenges. EIH faculty from the UW College of Engineering and the Institute of Translational Health Sciences’ (ITHS) Team Science Core codeveloped and delivered team science training sessions and evaluated their impact with biannual surveys. A student cohort was surveyed prior to the implementation of the team science trainings, which served as a baseline.
Results:
Survey responses were compared within and between both cohorts (approximately 55 students each Fall Quarter and 30 students each Spring Quarter). Statistically significant improvements in measures of self-efficacy and interpersonal team climate (i.e., psychological safety) were observed within and between teams.
Conclusions:
Tailored team science training provided to student-professional teams resulted in measurable improvements in self-efficacy and interpersonal climate both of which are crucial for teamwork and intellectual risk taking. Future research is needed to determine long-term impacts of course participation on individual and team outcomes (e.g., patents, start-ups). Additionally, adaptability of this model to clinical and translational research teams in alternate formats and settings should be tested.
Edited by
Alex S. Evers, Washington University School of Medicine, St Louis,Mervyn Maze, University of California, San Francisco,Evan D. Kharasch, Washington University School of Medicine, St Louis