We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use models constrained by remotely sensed data from Pine Island and Thwaites Glaciers, West Antarctica, to infer basal properties that are difficult to observe directly. The results indicate strong basal melting in areas upstream of the grounding lines of both glaciers, where the ice flow is fast and the basal shear stress is large. Farther inland, we find that both glaciers have ‘mixed’ bed conditions, with extensive areas of both bedrock and weak till. In particular, there are weak areas along much of Pine Island Glacier’s main trunk that could prove unstable if it retreats past the band of strong bed just above its current grounding line. In agreement with earlier studies, our forward ice-stream model shows a strong sensitivity to small perturbations in the grounding line position. These results also reveal a large sensitivity to the assumed bed (sliding or deforming) model, with non-linear sliding laws producing substantially greater dynamic response than earlier simulations that assume a linear-viscous till rheology. Finally, comparison indicates that our results using a plastic bed are compatible with the limited observational constraints and theoretical work that suggests an upper bound exists on maximum basal shear stress.
It has been an underlying assumption in many studies that near-surface layers imaged by ground-penetrating radar (GPR) can be interpreted as depositional markers or isochrones. It has been shown that GPR layers can be approximately reproduced from the measured electrical properties of ice, but these material layers are generally narrower and more closely spaced than can be resolved by typical GPR systems operating in the range 50−400 MHz. Thus GPR layers should be interpreted as interference patterns produced from closely spaced and potentially discontinuous material layers, and should not be assumed to be interpretable as precise markers of isochrones. We present 100 MHz GPR data from Lyddan Ice Rise, Antarctica, in which near-surface (<50 m deep) layers are clearly imaged. The growth of the undulations in these layers with depth is approximately linear, implying that, rather than resulting from a pattern of vertical strain rate, they do correspond to some pattern of snowfall variation. Furthermore, comparison of the GPR layers with snow-stake measurements suggests that around 80% of the rms variability in mean annual accumulation is present in the GPR layers. The observations suggest that, at least in this case, the GPR layers do approximate isochrones, and that patterns of snow accumulation over Lyddan Ice Rise are dominated by extremely persistent spatial variations with only a small residual spatial variability. If this condition is shown to be widely applicable it may reduce the period required for measurements of surface elevation change to be taken as significant indications of mass imbalance.
Satellite imagery indicates that the floating terminus of Pine Island Glacier has changed little in extent over the past two decades. Data on the velocity and thickness of the glacier reveal that calving of 28 ± 4 Gta−1 accounts for only half of the ice input near the grounding line. The apparently steady configuration implies that the remainder of the input is lost by basal melting at a mean rate of 12 ± 3 ma−1. Ocean circulation in Pine Island Bay transports +1°C waters beneath the glacier and temperatures recorded in melt-laden outflows show that heat loss from the ocean is consistent with the requirements of the calculated melt rate. The combination of iceberg calving and basal melting lies at the lower end of estimates for the total accumulation over the catchment basin, drawing into question previous estimates of a significantly positive mass budget for this part of the ice sheet.
Objectives: The aim of this study was to demonstrate the utility of an evidence-based assessment (EBA) model to establish a multimodal set of tools for identifying students at risk for perceived post-injury academic problems. Methods: Participants included 142 students diagnosed with concussion (age: M=14.95; SD=1.80; 59% male), evaluated within 4 weeks of injury (median=16 days). Demographics, pre-injury history, self- and parent-report measures assessing symptom severity and executive functions, and cognitive test performance were examined as predictors of self-reported post-injury academic problems. Results: Latent class analysis categorized participants into “high” (44%) and “low” (56%) levels of self-reported academic problems. Receiver operating characteristic analyses revealed significant discriminative validity for self- and parent-reported symptom severity and executive dysfunction and self-reported exertional response for identifying students reporting low versus high academic problems. Parent-reported symptom ratings [area under the receiver operating characteristic curve (AUC)=.79] and executive dysfunction (AUC=.74), and self-reported ratings of executive dysfunction (AUC=.84), symptoms (AUC=.80), and exertional response (AUC=.70) each classified students significantly better than chance (ps<.001). Hierarchical logistic regression indicated that, of the above, self-reported symptoms and executive dysfunction accounted for the most variance in the prediction of self-reported academic problems. Conclusions: Post-concussion symptom severity and executive dysfunction significantly predict perceived post-injury academic problems. EBA modeling identified the strongest set of predictors of academic challenges, offering an important perspective in the management of concussion by applying traditional strengths of neuropsychological assessment to clinical decision making. (JINS, 2016, 22, 1038–1049)
We present an overview of the survey for radio emission from active stars that has been in progress for the last six years using the observatories at Fleurs, Molonglo, Parkes and Tidbinbilla. The role of complementary optical observations at the Anglo-Australian Observatory, Mount Burnett, Mount Stromlo and Siding Spring Observatories and Mount Tamborine are also outlined. We describe the different types of star that have been included in our survey and discuss some of the problems in making the radio observations.
We introduce a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films. Using a Ni/Cu catalytic alloy, we obtain a transfer-free bilayer graphene directly on Si(100) wafers, at temperatures potentially compatible with conventional semiconductor processing. The graphene covers uniformly a 2″ silicon wafer, with a Raman ID/IG band ratio as low as 0.5, indicative of a low defectivity material. The sheet resistance of the graphene is as low as 25 Ω/square, and its adhesion energy to the underlying substrate is substantially higher than transferred graphene. This work opens the avenue for the true wafer-level fabrication of microdevices comprising graphene functional layers. Specifically, we suggest that exceptional conduction qualifies this graphene as a metal replacement for MEMS and advanced on-chip interconnects with ultimate scalability.
Crop protection against pests and diseases is of prime importance and plays a major role in agricultural production both in the Developed and Developing parts of the world.
Although chemical pesticides have been in use for a long time it is only since the Second World War that a very heavy and almost exclusive reliance has been placed upon their use. This, in many cases, has resulted in the rapid build-up of resistance by insect pests to such compounds, as is illustrated by the rapidly developed resistance to the organochloride insecticides by the cotton bollworm, Heliothis virescens. Indeed, there are many examples of resistance in a major pest being observed within the first year of field use (Metcalf 1986). In some cases the indiscriminate application of pesticides has exacerbated the problem of insect herbivory where elimination of a wide range of predatory species along with the primary pests has resulted in secondary pests becoming primary pests themselves with even more devastating effects (Heinrichs & Mochida 1983).
Field observations from the Trinity Peninsula Group at View Point on the Antarctic Peninsula indicate that thick, southward-younging and overturned clastic sedimentary rocks, comprising unusually coarse conglomeratic lenses within a succession of fine-grained sandstone–mudstone couplets, are the deposits of debris and turbidity flows on or at the foot of a submarine slope. Three detrital zircons from the sandstone–mudstone couplets date deposition at 302 ± 3 Ma, at or shortly after the Carboniferous–Permian boundary. Conglomerates predominantly consist of quartzite and granite and contain boulders exceeding 500 mm in diameter. Zircons from granitoid clasts and a silicic volcanic clast yield U–Pb ages of 466 ± 3 Ma, 373 ± 5 Ma and 487 ± 4 Ma, respectively and have corresponding average εHft values between +0.3 and +7.6. A quartzite clast, conglomerate matrix and sandstone interbedded with the conglomerate units have broadly similar detrital zircon age distributions and Hf isotope compositions. The clast and detrital zircon ages match well with sources within Patagonia; however, the age of one granite clast and the εHf characteristics of some detrital zircons point to a lesser South Africa or Ellsworth Mountain-like contribution, and the quartzite and granite-dominated composition of the conglomerates is similar to upper Palaeozoic diamictites in the Ellsworth Mountains. Unlike detrital zircons, large conglomerate clasts limit possible transport distance, and suggest sedimentation took place on or near the edge of continental crust. Comparison with other upper Palaeozoic to Mesozoic sediments in the Antarctic Peninsula and Patagonia, including detrital zircon composition and the style of deformation, suggests deposition of the Trinity Peninsula Group in an upper plate basin on an active margin, rather than a subduction-related accretionary setting, with slow extension and rifting punctuated by short periods of compression.
The temperature dependent structural evolutions of RbxC60 (x = 3, 5, 6) and K4C60 were studied using both in-house andsynchrotron x-ray powder diffraction and thermal analysis techniques over a temperature range of 10K - 673K. The superconducting face centered-cubic (fcc) Rb3C60 and the body centered-tetragonal (bct) M4C60(M = K, Rb) phases are found to be line compounds in this temperature range, while the body centered-cubic (bcc) phase forms a solid solution in which the solubility of vacant M sites increases with temperature. The orientation of the C60 molecules in the K4C60 phase was analyzed. A crystalline fcc Rb1C60 phase is stable only above room temperature.
Scanning cathodoluminescence microscopy (SCM) has been used for nondestructive characterization of the optoelectronic properties of heavily Zn-doped, Bridgman-grown polycrystalline GaAs. Grain boundaries can either show no cathodoluminescence contrast, appear as dark lines, or appear slightly brighter than the surrounding matrix. Boundaries with similar surface morphologies can show different contrast. Spectral analysis data indicate that many of the observed features are due to local variations in impurity concentration.
Proton magnetic resonance data are presented for the hydrogen alloys of plasma-deposited amorphous boron, silicon, carbon, silicon carbide, and silicon nitride. Linewidth and lineshape analysis leads to the conclusion that hydrogen nuclei are clustered in a-Si/C:H, a-C:H, and a-Si/NiH. The a-Si/C:H and a-C:H data show that hydrogen exists in two phases. Modeling of linewidths in a-Si/C:H indicates that the two phases are heavily hydrogenated carbon clusters imbedded in a weakly hydrogenated silicon lattice. Evidence is also presented for the presence of motionally narrowed hydrogen spectra in a-B:H, a-Si/N:H and a-C:H. “B NMR spectra in a-B:H show no evidence of motional narrowing. It is suggested that the hydrogen nuclei giving rise to the motionally narrowed spectra are associated with disorder modes.
Fluorine modified oxide surfaces have received considerable attention both as research materials and as commercial catalysts. Pulsed NMR has been used to directly observe protons and fluorine on fluorine modified silica,alumina, and aluminosilicates. The center of mass of the 19F spectra is consistent with values reported for covalent siliconfluorine and aluminum-fluorine bonds. The proton and fluorine concentrations have been investigated as a function of sample preparation.
Hoarding seems to be a non-specific symptom, as it has been associated with a wide range of psychiatric disorders. Validating hoarding as pathological is controversial and its nosological status remains unresolved. ‘Diogenes syndrome’ has been paradigmatic in this area, but its clinical use seems limited. Hoarding is not explicitly covered in either DSM–IV or ICD–10 and literature suggests that diagnosis of mental illness may consequently be missed in this population. In the context of these theoretical uncertainties, clinicians still need to accurately assess and treat patients who show hoarding behaviour. To this end, we summarise the available evidence, and present assessment and management algorithms together with a multicomponent psychological intervention that aims to teach patients to successfully apply the three Rs (reduce, recycle, reuse).
The levels of four sets of pollutants (heavy-metals, artificial radionuclides, petroleum components, and halogenated hydrocarbons), have been measured in U.S. coastal waters, using bivalves as sentinel organisms. The strategies of carrying out this programme are outlined and the results from the first year's work are given. Varying degrees of pollution in U.S. coastal waters have been indicated by elevated levels of pollutants in the bivalves, which comprised certain species of mussels and oysters and were collected at over one hundred localities.