We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work we quantitatively assess, via instabilities, a Navier–Stokes-order (small-Knudsen-number) continuum model based on the kinetic theory analogy and applied to inelastic spheres in a homogeneous cooling system. Dissipative collisions are known to give rise to instabilities, namely velocity vortices and particle clusters, for sufficiently large domains. We compare predictions for the critical length scales required for particle clustering obtained from transient simulations using the continuum model with molecular dynamics (MD) simulations. The agreement between continuum simulations and MD simulations is excellent, particularly given the presence of well-developed velocity vortices at the onset of clustering. More specifically, spatial mapping of the local velocity-field Knudsen numbers ($K{n}_{u} $) at the time of cluster detection reveals $K{n}_{u} \gg 1$ due to the presence of large velocity gradients associated with vortices. Although kinetic-theory-based continuum models are based on a small-$Kn$ (i.e. small-gradient) assumption, our findings suggest that, similar to molecular gases, Navier–Stokes-order (small-$Kn$) theories are surprisingly accurate outside their expected range of validity.
Flow instabilities encountered in the homogeneous cooling of a gas–solid system are considered via lattice-Boltzmann simulations. Unlike previous efforts, the relative contribution of the two mechanisms leading to instabilities is explored: viscous dissipation (fluid-phase effects) and collisional dissipation (particle-phase effects). The results indicate that the instabilities encountered in the gas–solid system mimic those previously observed in their granular (no fluid) counterparts, namely a velocity vortex instability that precedes in time a clustering instability. We further observe that the onset of the instabilities is quicker in more dissipative systems, regardless of the source of the dissipation. Somewhat surprisingly however, a cross-over of the kinetic energy levels is observed during the evolution of the instability. Specifically, the kinetic energy of the gas–solid system is seen to become greater than that of its granular counterpart (i.e. same restitution coefficient) after the vortex instability sets in. This cross-over of kinetic energy levels between a more dissipative system (gas–solid) and a less dissipative system (granular) can be explained by the alignment of particle motion found in a vortex. Such alignment leads to a reduction in both collisional and viscous energy dissipation due to the more glancing nature of collisions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.