We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Benefit-cost analyses of regulations address Kaldor-Hicks efficiency but rarely investigate the distribution of benefits and costs as experienced by low-income households. In order to fill this gap, this article assembles the available evidence to determine how regulations of the automobile industry may impact the well-being of low-income Americans. The scope of the investigation includes air pollution, safety and fuel-economy regulations. We find that performing benefit-cost analyses for low-income households is more challenging than commonly understood. Given the difficulties in completing distributional analysis with available information, the authors offer practical suggestions on how to change the federal data systems and the rulemaking process to ensure that information is collected about how future automobile regulations impact the well-being of the poor.
There is increasing evidence for shared genetic susceptibility between schizophrenia and bipolar disorder. Although genetic variants only convey subtle increases in risk individually, their combination into a polygenic risk score constitutes a strong disease predictor.
Aims
To investigate whether schizophrenia and bipolar disorder polygenic risk scores can distinguish people with broadly defined psychosis and their unaffected relatives from controls.
Method
Using the latest Psychiatric Genomics Consortium data, we calculated schizophrenia and bipolar disorder polygenic risk scores for 1168 people with psychosis, 552 unaffected relatives and 1472 controls.
Results
Patients with broadly defined psychosis had dramatic increases in schizophrenia and bipolar polygenic risk scores, as did their relatives, albeit to a lesser degree. However, the accuracy of predictive models was modest.
Conclusions
Although polygenic risk scores are not ready for clinical use, it is hoped that as they are refined they could help towards risk reduction advice and early interventions for psychosis.
Declaration of interest
R.M.M. has received honoraria for lectures from Janssen, Lundbeck, Lilly, Otsuka and Sunovian.
Children with CHD and acquired heart disease have unique, high-risk physiology. They may have a higher risk of adverse tracheal-intubation-associated events, as compared with children with non-cardiac disease.
Materials and methods
We sought to evaluate the occurrence of adverse tracheal-intubation-associated events in children with cardiac disease compared to children with non-cardiac disease. A retrospective analysis of tracheal intubations from 38 international paediatric ICUs was performed using the National Emergency Airway Registry for Children (NEAR4KIDS) quality improvement registry. The primary outcome was the occurrence of any tracheal-intubation-associated event. Secondary outcomes included the occurrence of severe tracheal-intubation-associated events, multiple intubation attempts, and oxygen desaturation.
Results
A total of 8851 intubations were reported between July, 2012 and March, 2016. Cardiac patients were younger, more likely to have haemodynamic instability, and less likely to have respiratory failure as an indication. The overall frequency of tracheal-intubation-associated events was not different (cardiac: 17% versus non-cardiac: 16%, p=0.13), nor was the rate of severe tracheal-intubation-associated events (cardiac: 7% versus non-cardiac: 6%, p=0.11). Tracheal-intubation-associated cardiac arrest occurred more often in cardiac patients (2.80 versus 1.28%; p<0.001), even after adjusting for patient and provider differences (adjusted odds ratio 1.79; p=0.03). Multiple intubation attempts occurred less often in cardiac patients (p=0.04), and oxygen desaturations occurred more often, even after excluding patients with cyanotic heart disease.
Conclusions
The overall incidence of adverse tracheal-intubation-associated events in cardiac patients was not different from that in non-cardiac patients. However, the presence of a cardiac diagnosis was associated with a higher occurrence of both tracheal-intubation-associated cardiac arrest and oxygen desaturation.
To evaluate a computer-assisted point-prevalence survey (CAPPS) for hospital-acquired infections (HAIs).
DESIGN
Validation cohort.
SETTING
A 754-bed teaching hospital in the Netherlands.
METHODS
For the internal validation of a CAPPS for HAIs, 2,526 patients were included. All patient records were retrospectively reviewed in depth by 2 infection control practitioners (ICPs) to determine which patients had suffered an HAI. Preventie van Ziekenhuisinfecties door Surveillance (PREZIES) criteria were used. Following this internal validation, 13 consecutive CAPPS were performed in a prospective study from January to March 2013 to determine weekly, monthly, and quarterly HAI point prevalence. Finally, a CAPPS was externally validated by PREZIES (Rijksinstituut voor Volksgezondheid en Milieu [RIVM], Bilthoven, Netherlands). In all evaluations, discrepancies were resolved by consensus.
RESULTS
In our series of CAPPS, 83% of the patients were automatically excluded from detailed review by the ICP. The sensitivity of the method was 91%. The time spent per hospital-wide CAPPS was ~3 hours. External validation showed a negative predictive value of 99.1% for CAPPS.
CONCLUSIONS
CAPPS proved to be a sensitive, accurate, and efficient method to determine serial weekly point-prevalence HAI rates in our hospital.
This review offers a critical-care perspective on the pathophysiology, monitoring, and management of acute heart failure syndromes in children. An in-depth understanding of the cardiovascular physiological disturbances in this population of patients is essential to correctly interpret clinical signs, symptoms and monitoring data, and to implement appropriate therapies. In this regard, the myocardial force–velocity relationship, the Frank–Starling mechanism, and pressure–volume loops are discussed. A variety of monitoring modalities are used to provide insight into the haemodynamic state, clinical trajectory, and response to treatment. Critical-care treatment of acute heart failure is based on the fundamental principles of optimising the delivery of oxygen and minimising metabolic demands. The former may be achieved by optimising systemic arterial oxygen content and the variables that determine cardiac output: heart rate and rhythm, preload, afterload, and contractility. Metabolic demands may be decreased by a number of ways including positive pressure ventilation, temperature control, and sedation. Mechanical circulatory support should be considered for refractory cases. In the near future, monitoring modalities may be improved by the capture and analysis of complex clinical data such as pressure waveforms and heart rate variability. Using predictive modelling and streaming analytics, these data may then be used to develop automated, real-time clinical decision support tools. Given the barriers to conducting multi-centre trials in this population of patients, the thoughtful analysis of data from multi-centre clinical registries and administrative databases will also likely have an impact on clinical practice.
Stellar variability induced by starspots can hamper the detection of exoplanets and bias planet property estimations. These features can also be used to study star-planet interactions as well as inferring properties from the underlying stellar dynamo. However, typical techniques, such as ZDI, are not possible for most host-stars. We present a robust method based on spot modelling to map the surface of active star allowing us to statistically study the effects and interactions of stellar magnetism with transiting exoplanets. The method is applied to the active Kepler-9 star where we find small evidence for a possible interaction between planet and stellar magnetosphere which leads to a 2:1 resonance between spot rotation and orbital period.
Undergraduate teaching in general practice started life in the University of Leeds on 1 July 1974 as a division within the department of community medicine and general practice. The department was headed by Professor Gerald Richards, whose clear preference was that, in terms of educational and research policy, the new unit should have a considerable measure of autonomy.
Though vigorously supported by the then Dean (Professor Derek Wood), the creation of such a unit was regarded with derision by a few of the influential senior faculty staff. Curricular time was, consequently, limited at first to a fortnight in the students' final year.
Financial issues also loomed large. Some four years earlier the UGC had ruled that NHS fees and allowances earned by practitioners appointed to such a unit should be assigned to the university. There was to be no ‘service increment for teaching’ (SIFT) such as applied to hospital-based teaching units.
Preparation
John Wright was appointed head of the division six months in advance and this enabled the selection of sixteen part-time ‘tutors in general practice’ – local practitioners who would take students regularly into their practices and meet monthly to review problems and progress. This also allowed time to gain experience from visiting other units, both in the UK and in Toronto and at McMaster in Canada.
In contrast to the views put forth by Stein & Glasier, we support the use of inbred strains of rodents in studies of the immunobiology of neural transplants. Inbred strains demonstrate homology of the major histocompatibility complex (MHC). Virtually all experimental work in transplantation immunology is performed using inbred strains, yet very few published studies of immune rejection in intracerebral grafts have used inbred animals.
Populations of the recently split Northern Rockhopper Penguin Eudyptes moseleyi are restricted to Tristan da Cunha and Gough Island in the South Atlantic, and Amsterdam and St Paul in the Indian Ocean. The majority of the population is in the Atlantic (> 80%), but population trends at Tristan da Cunha and Gough are uncertain. Early records indicate “millions” of penguins used to occur at Tristan da Cunha and Gough Island. The most recent estimates indicate declines in excess of 90% for both Gough and the main island of Tristan that have occurred over at least 45 and 130 years, respectively. Numbers breeding at Inaccessible and Nightingale islands (TDC) also may have declined since the 1970s, albeit modestly, whereas numbers on Tristan appear stable over the last few decades. Current population estimates are 32,000–65,000 pairs at Gough, 18–27,000 at Inaccessible, 19,500 at Nightingale, and 3,200–4,500 at Tristan. Numbers and trends at Middle Island (TDC) are unknown. Middle Island supported an estimated 100,000 pairs in 1973, and recent observations suggest this colony is being impacted by competition for space with recently recolonising Subantarctic Fur Seals Arctocephalus tropicalis. Past human exploitation and the impact of introduced predators may be responsible for the historical decline in numbers at Tristan, but these factors cannot explain the sharp decrease (since the 1950s) at Gough Island. Overall, declines at Gough, Tristan, Nightingale and Inaccessible islands indicate a three-generation decline of > 50%. Taken in combination with recent decreases in Indian Ocean populations, the Northern Rockhopper Penguins is now categorised as globally ‘Endangered’. Determining the causal factors responsible for these recent declines is an urgent priority.
The road to achieve ultra high efficiency is through multi-junction solar cells operating at high solar concentrations, larger than 1000 suns. Critical to the success of this approach is the development of tunnel junctions (TJ) that serve as electrically low loss interconnections, yet are optically transparent, using high band gap semiconductor material systems. We have previously reported the fabrication of a TJ made of n+-InGaP/ p+-AlGaAs with a band gap about 1.9 eV using Se and C doping, respectively. This TJ structure has a peak current density of 88 A/cm2 allowing it to be implemented in a three junction cell structure at solar concentrations as high as 4000 suns (x4000). Almost all reported conversion efficiencies higher than 40% have used this tunnel junction. This very high peak current density is unexpected in a high band gap material system, which is good news for the multi junction solar community. This seems to be due to the fact that the InGaP/AlGaAs interface has a staggered band line up. We will present the effect of this band line up at the heterointerface and its effect on the width of the depletion region and the peak current density. We also compare the current result from this heterostructure junction with an artificial homojunction made of n+-AlGaAs/ p+-AlGaAs doped to the same levels as that of the heterojunction. Results from the homojunction showed that peak current density is about one half of that obtained from the heterojunction at the same doping levels. A reasonable match between experimental result and the model was obtained when a value of 150 meV was used for ΔEc, the conduction band discontinuity at the interface. Both experiment and theory predicted that at a current density of about 80 A/cm2 with only about a few tens of meV drop across the TJ. This will have a minimal effect on the overall efficiency of the tandem solar cell structure when used at high solar concentrations.
InGaAs can be used to enhance the response of solar cells past the 1.43 eV cutoff of GaAs. Strained-layer superlattice (SLS) structures with high indium and phosphorus compositions (up to 35% and 68% respectively) have been grown successfully. SLS solar cells with indium and high phosphorus compositions (up to 15% and 85% respectively) have been grown successfully. The spectral response of the solar cells has been extended to as low as 1.27 eV. This enhancement is also shown by an increase in the short circuit current, with a small reduction in the short circuit voltage as compared to standard GaAs p-n junction for AM1.5 and one sun.
Dark current curves show the extent of recombination in the superlattice. The reverse saturation current in the recombination region (0.2-0.8 V) was determined using a non-linear least squares fitting routine. An Arrhenius plot was generated by finding the reverse saturation current over a temperature range of 300-370 K. The low recombination devices show non-ideality constants of 1.7 with activation energies of 1.3-1.4 eV. The high recombination devices have non-ideality constants (˜2.3) and lower activation energies of 1.1 eV.
Palatopharyngeal injuries due to impaction of rigid objects held in the mouth are common. Most are essentially innocuous injuries requiring no specific treatment. However, there is the potential for perforation of the pharyngeal wall with the subsequent development of serious infection such as retropharyngeal abscess or mediastinitis. This possibility is more likely to be suspected in the presence of a visible laceration or puncture wound at the site of impact in the mouth or pharynx. We report three cases in which occult pharyngeal perforation occurred without any clinical signs of breech of the pharyngeal wall. In all cases a lateral soft tissue neck X-ray was diagnostic of perforation, showing the presence of retropharyngeal air. We, therefore, advocate the routine performance of soft tissue neck X-rays in all patients who present with a history of falling on a rigid object held in the mouth.
In addition to being successfully used for ion implantation, the plasma source ion implantation (PSII) technique has been used to produce diamond-like carbon films. Homogeneous, adherent films were obtained on silicon and stainless steel substrates under 2 kV pulse bias voltages and 50 mtorr methane plasma pressure. Chemical composition analysis was made using Auger electron microscopy. Fretting wear tests and scratch tests were performed to study the