We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the correlation between ventricular pre-excitation-related dyssynchrony, on cardiac dysfunction, and recovery.
Methods and Results:
This study included 76 children (39 boys and 37 girls) with a median age of 5.25 (2.67–10.75) years. The patients with pre-excitation-related cardiac dysfunction (cardiac dysfunction group, n = 34) had a longer standard deviation of the time-to-peak systolic strain of the left ventricle and larger difference between the maximum and minimum times-to-peak systolic strain than those with a normal cardiac function (normal function group, n = 42) (51.77 ± 24.70 ms versus 33.29 ± 9.48 ms, p < 0.05; 185.82 ± 92.51 ms versus 111.93 ± 34.27 ms, p < 0.05, respectively). The cardiac dysfunction group had a maximum time-to-peak systolic strain at the basal segments of the anterior and posterior septa and the normal function group at the basal segments of anterolateral and posterolateral walls. The prevalence of ventricular septal dyssynchrony in the cardiac dysfunction group was significantly higher than that in the normal function group (94.1% (32/34) versus 7.7% (3/42), p < 0.05). The patients with ventricular septal dyssynchrony (n = 35) had a significantly higher prevalence of intra-left ventricular systolic dyssynchrony than those with ventricular septal synchrony (n = 41) (57.1% (20/35) versus 14.6% (6/41), p < 0.05). During follow-up after pathway ablation, the patients who recovered from intra-left ventricular dyssynchrony (n = 29) had a shorter left ventricular ejection fraction recovery time than those who did not (n = 5) (χ2 = 5.94, p < 0.05). Among the patients who recovered, 93.1% (27/29) had a normalised standard deviation of the time-to-peak systolic strain and difference between the maximum and minimum times-to-peak systolic strain within 1 month after ablation.
Conclusion:
Ventricular pre-excitation may cause ventricular septal dyssynchrony; thus, attention must be paid to intra-left ventricular dyssynchrony and cardiac dysfunction. Whether intra-left ventricular systolic dyssynchrony can resolve within 1 month may be a new early predictor of patient prognosis.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
The study was conducted to determine the effects of three dietary Se sources, such as sodium-selenite (S-S), seleno-yeast (S-Y) and seleno-methionine (S-M), on Se concentration, glutathione peroxidase (GPX) and TXNRD activities, and mRNA expression of fifteen representative selenoproteins, and protein expression of four endoplasmic reticulum-resided selenoproteins in a wide range of tissues of yellow catfish. Compared with S-S and S-M groups, dietary S-Y significantly decreased growth performance and feed utilisation of yellow catfish. Dietary Se sources significantly influenced Se contents in the spleen, dorsal muscle and the kidney, GPX activities in spleen, kidney, intestine, muscle and mesenteric fat, and TXNRD activities in the heart, intestine and mesenteric fat. Among ten tested tissues, dietary Se sources influenced mRNA expression of GPX4 and SELENOK in three tissues; GPX3, SELENOS and TXNRD2 in four tissues; SELENOF, SELENON and DIO2 in five tissues; SELENOM, GPX1/2 and TXNRD3 in six tissues; SELENOW in seven tissue and SELENOP and SELENOT in eight tissues. Based on these observations above, S-S and S-M seem to be suitable Se sources for improving growth performance and feed utilisation of yellow catfish. Dietary Se sources differentially influence the expression of selenoproteins in various tissues of yellow catfish. For the first time, we determined the expression of selenoproteins in fish in responses to dietary Se sources, which contributes to a better understanding of the functions and regulatory mechanisms of selenoporteins.
Pre-harvest sprouting (PHS) induced by the absence of seed dormancy causes a severe reduction in crop yield and flour quality. In this study, we isolated and characterized TaABI4, an ABA-responsive transcription factor that participates in regulating seed germination in wheat. Sequence analysis revealed that TaABI4 has three homologues, located on chromosomes 1A/1B/1D. TaABI4 contains a conserved AP2 domain, and AP2-associated, LRP and potential PEST motifs. Putative cis-acting regulatory elements (CE1-like box, W-box, ABRE elements and RY elements) were identified in the TaABI4 promoter region that showed high conservation in 17 wheat cultivars and wheat-related species. Expression profiling of TaABI4 indicated that it is a seed-specific gene accumulating during the middle stages of seed development. Transcript accumulation of TaABI4 in wheat cultivar Chuanmai 32 (CM32, PHS susceptible) was 5.07-fold and 1.39-fold higher than that in synthetic hexaploidy wheat SHW-L1 (PHS resistant) at 15 and 20 DPA, respectively. Six expression quantitative trait loci (eQTL) of TaABI4 on chromosomes 2A, 2D, 3B and 4A were characterized based on the accumulated transcripts of TaABI4 in SHW-L1 and CM32-derived recombinant inbred lines. These QTLs explained 10.7 to 46.1% of the trait variation with 4.53–10.59 of LOD scores, which contain genes that may affect the expression of TaABI4.
The prevalence of central obesity in the total population has been reported in numerous studies. However, information on the prevalence of central obesity within normal-category BMI is scant. In the present study, we examined the profiles of central obesity among normal-weight children and adolescents. A total of 29 516 (14 226 boys and 15 290 girls) normal-weight children and adolescents (excluding underweight, overweight and obesity) aged 7–18 years were included in the final analysis. Central obesity was defined by the international age- and sex-specific cut-offs of waist circumference (WC) and threshold of waist:height ratio (WHtR ≥ 0·5). All subjects were classified into four groups (Q1–Q4) according to the age- and sex-specific quartiles of BMI, those in the upper fourth (Q4) were defined as ‘high-normal BMI’ and those in the lower fourth (Q1) were defined as ‘low-normal BMI’. The prevalence of central obesity as measured by WC was 9·90 (95 % CI 9·41, 10·39) % for boys and 8·11 (95 % CI 7·68, 8·54) % for girls; by WHtR was 2·97 (95 % CI 2·69, 3·25) % for boys and 2·44 (95 % CI 2·20, 2·68) % for girls. Subjects in the Q4 group had a much higher prevalence of central obesity than their counterparts in the Q1 group (P < 0·01). Our findings suggest that the health risks of children with normal-weight central obesity may be missed when BMI is used alone as a measure; it is meaningful to include WC in clinical practice and to include the simple message ‘Keep your waist to less than half your height’.
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
The notion of recurrent fractal interpolation functions (RFIFs) was introduced by Barnsley et al. [‘Recurrent iterated function systems’, Constr. Approx.5 (1989), 362–378]. Roughly speaking, the graph of an RFIF is the invariant set of a recurrent iterated function system on
$\mathbb {R}^2$
. We generalise the definition of RFIFs so that iterated functions in the recurrent system need not be contractive with respect to the first variable. We obtain the box dimensions of all self-affine RFIFs in this general setting.
Rare earth elements (REE) in marine minerals have been widely used as proxies for the redox status of depositional and/or diagenetic environments. Phosphate nodules, which are thought to grow within decimetres below the sediment–water interface and to be able to scavenge REE from the ambient pore water, are potential archives of subtle changes in REE compositions. Whether their REE signals represent specific redox conditions or they can be used to track the overlying water chemistry is worth exploring. Through in situ laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS), we investigate the REE compositions of a drill-core-preserved phosphate nodule from the lower Cambrian Niutitang Formation in the Daotuo area, northeastern Guizhou Province, South China. REE distributions of the nodule show concentric layers with systematic decreases in Ce anomalies (Ce/Ce*) from the core to the rim. The lowest Ce/Ce* appears in the outer rim where REE concentrations are relatively high. These results are interpreted to reflect REE exchange with pore water at a very early stage or bathymetric variation during apatite precipitation. The origin of the shale-normalized middle REE (MREE) enrichment in our sample is less constrained. Possible driving factors include preferential MREE substitution for Ca in the apatite lattice, degradation of organic matter and deposition beneath a ferruginous zone. Although speculative, the last possibility is consistent with the chemically stratified model for early Cambrian oceans, in which dynamic fluctuations of the chemocline provided an ideal depositional context for phosphogenesis.
Predictors of compliance with aspirin in children following cardiac catheterisation have not been identified. The aim of this study is to identify the caregivers’ knowledge, compliance with aspirin medication, and predictors of compliance with aspirin in children with Congenital Heart Disease (CHD) post-percutaneous transcatheter occlusion.
Methods:
A cross-sectional explorative design was adopted using a self-administered questionnaire and conducted between May 2017 and May 2018. Recruited were 220 caregivers of children with CHD post-percutaneous transcatheter occlusion. Questionnaires included child and caregivers’ characteristics, a self-designed and tested knowledge about aspirin scale (scoring scale 0–2), and the 8-item Morisky Medication Adherence Scale (scoring scale 0–8). Data were analysed using multivariate binary logistic regression analysis to identify predictors of compliance with aspirin.
Results:
Of the 220 eligible children and caregivers, 210 (95.5%) responded and 209 surveys were included in the analysis. The mean score of knowledge was 7.25 (standard deviation 2.27). The mean score of compliance was 5.65 (standard deviation 1.36). Child’s age, length of aspirin use, health insurance policies, relationship to child, monthly income, and knowledge about aspirin of caregivers were independent predictors of compliance with aspirin (p < 0.05).
Conclusion:
Caregivers of children with CHD had an adequate level of knowledge about aspirin. Compliance to aspirin medication reported by caregivers was low. Predictors of medium to high compliance with aspirin were related to the child’s age and socio-economic reasons. Further studies are needed to identify effective strategies to improve knowledge, compliance with medication, and long-term outcomes of children with CHD.
The North Qilian orogenic belt in North China has been defined as a subduction–collision zone between the Alxa Block and the Qilian Block. We present petrography, zircon U–Pb geochronology, major- and trace-element geochemistry, and Sr–Nd–Pb–Hf isotope analysis for the Yushigou diabase from the Longshoushan area, which is located SW of the Alxa Block, aiming to understand its petrogenetic link to subduction processes. The Yushigou diabase belongs to the tholeiite series, and shows enrichment in light rare earth and large-ion lithophile elements, and a depletion in heavy rare earth and high-field-strength elements. Laser ablation – inductively coupled plasma – mass spectrometry U–Pb zircon dating yielded an emplacement age of 414 ± 9 Ma, with an ϵHf(t) value in the range of −10.3 to 1.8. The whole-rock initial 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the diabase range over 16.811–17.157, 15.331–15.422 and 37.768–37.895, respectively. The (87Sr/86Sr)i ratios vary between 0.7086 and 0.7106, and ϵNd(t) values vary between −14.4 and −13.4, which are significantly higher than the ϵHf(t) value (Nd–Hf decoupling). An interpretation of the elemental and isotopic data suggests that the Yushigou diabase was derived from partial melting of an enriched mantle I (EM-I) -type lithospheric mantle in the spinel–garnet transitional zone. Based on the geochemical features and previous regional geological data, we propose that the Silurian magmatism was most likely triggered by slab break-off after the closure of the North Qilian Ocean, and ancient continental materials from the subduction slab metasomatized the overlying lithospheric mantle during exhumation.
A suite of Jurassic–Cretaceous migmatites was newly identified in the Liaodong Peninsula of the eastern North China Craton (NCC). Anatexis is commonly associated with crustal thickening. However, the newly identified migmatites were formed during strong lithospheric thinning accompanied by voluminous magmatism and intense deformation. Field investigations show that the migmatites are spatially associated with low-angle detachment faults. Numerous leucosomes occur either as isolated lenses or thin layers (dykes), parallel to or cross-cutting the foliation. Peritectic minerals such as titanite and sillimanite are distributed mainly along the boundaries of reactant minerals or are accumulated along the foliation. Most zircons show distinct core–rim structures, and the rims have low Th/U ratios (0.01–0.24). Zircon U–Pb dating results indicate that the protoliths of the migmatites were either the Late Triassic (224–221 Ma) diorites or metasedimentary rocks deposited sometime after c. 1857 Ma. The zircon overgrowth rims record crystallization ages of 173–161 Ma and 125 Ma, which represent the formation time of leucosomes. These ages are consistent with those reported magmatic events in the Liaodong Peninsula and surrounding areas. The leucosomes indicate a strong anatectic event during the Jurassic–Cretaceous period. Partial melting occurred through the breakdown of muscovite and biotite with the presence of water-rich fluid under a thermal anomaly regime. The possible mechanism that caused the 173–161 Ma and 125 Ma anatectic events was intimately related to the regional crustal extension during the lithospheric thinning of the NCC. Meanwhile, the newly generated melts further weakened the rigidity of the crust and enhanced the extension.
Six acidic dykes were discovered surrounding the Laiziling pluton, Xianghualing area, in the western Cathaysia Block, South China. A number of captured zircons are found in two of these acidic dykes. By detailed U–Pb dating, Lu–Hf isotopes and trace-element analysis, we find that these zircons have ages clustered at c. 2.5 Ga. Two acidic dyke samples yielded upper intersection point 206U/238Pb ages of 2505 ± 42 Ma and 2533 ± 22 Ma, and weighted mean 207Pb/206Pb ages of 2500 ± 30 Ma and 2535 ± 16 Ma. The majority of these zircons have high (Sm/La)N, Th/U and low Ce/Ce* ratios, indicating a magmatic origin, but some grains were altered by later hydrothermal fluid. Additionally, the magmatic zircons have high Y, U, heavy rare earth element, Nb and Ta contents, indicating that their host rocks were mainly mafic rocks or trondhjemite–tonalite–granodiorite rock series. Equally, their moderate Y, Yb, Th, Gd and Er contents also indicate that a mafic source formed in a continental volcanic-arc environment. These zircons have positive ϵHf(t) values (2.5–6.9) close to zircons from the depleted mantle, with TDM (2565–2741 Ma) and TDM2 (2608–2864 Ma) ages close to their formation ages, indicating that these zircons originated directly from depleted mantle magma, or juvenile crust derived from the depleted mantle in a very short period. We therefore infer that the Cathaysia Block experienced a crustal growth event at c. 2.5 Ga.
Information about seed dormancy cycling and germination in relation to temperature and moisture conditions in the natural environment is important for the conservation and restoration of rare species, including Begonia guishanensis and Paraisometrum mileense, two sympatric perennial limestone (karst) species. Dry afterripening (DAR) and wet and dry (WD) cycles at 15/5 and 25/15°C as well as moist chilling (MC) at 15/5°C were used to mimic the natural environment at different times of the year. A field experiment was conducted to monitor seasonal changes in germination responses of the seeds. About 40–65% of B. guishanensis and 5% of P. mileense seeds were dormant at maturity. DAR at 25/15 and 15/5°C as well as MC and WD cycles at 15/5°C alleviated dormancy for B. guishanensis but not P. mileense, and WD cycles at 25/15°C induced a deeper conditional dormancy for both species. Seeds of B. guishanensis exhibited dormancy cycling in the field, with increased dormancy under natural WD cycles at relatively high temperatures during the transition from the dry to the wet season in April to May and decreased dormancy during the wet season from June to October. KNO3 mitigated the dormancy-inducing effect of both artificial and natural WD cycles at relatively high temperatures for B. guishanensis. The field experiment indicated that seeds of B. guishanensis may be able to form a persistent soil seed bank, while almost all seeds of P. mileense germinate at the beginning of the wet season in the field.
Let $\overline{t}(n)$ be the number of overpartitions in which (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part is odd then it is overlined. Ramanujan-type congruences for $\overline{t}(n)$ modulo small powers of $2$ and $3$ have been established. We present two infinite families of congruences modulo $5$ and $27$ for $\overline{t}(n)$, the first of which generalises a recent result of Chern and Hao [‘Congruences for two restricted overpartitions’, Proc. Math. Sci.129 (2019), Article 31].
We construct a multiply Xiong chaotic set with full Hausdorff dimension everywhere that is contained in some multiply proximal cell for the full shift over finite symbols and the Gauss system, respectively.
Residual strain often occurs in metal when it was subjected to the tension load, random vibration, or high impact. The mild steel was selected as the research object, and the feasibility of using nonlinear ultrasonic technique to characterize the residual strain was investigated in this paper. First, the mild steel specimens were stretched to several different kinds of stress, then the nonlinear effect as well as the microstrain of each sample was measured. The results indicate that the microstrain increases with increasing applied stress and reaches a maximum value of about 0.036% as the tensile stress increases to the elastic limit. Compared with the original specimen, the nonlinear parameter of tensile specimen gradually increased within the elastic limit. This result reveals that the variation of nonlinear parameter was related to microstrain in mild steel, because the microstructure observation demonstrated that the dislocation structure was basically unchanged within the elastic limit. This research indicates that the nonlinear ultrasonic method has the promising potential to characterize the microstrain in metals.
In this paper, a novel multilayer substrate integrated dual-mode dielectric resonator (DR) filter is proposed. The square dual-mode DR is made of the high permittivity substrate by removing the undesired portions and the surface coppers so that the relatively high unloaded quality factor of the dominate TM11 pair can be obtained which compared to these fully dielectric-filled substrate integrated waveguides. Meanwhile, it can be easily integrated in an equivalent cavity implemented by multilayer printed circuit boards for filter design, showcasing low in-band loss, light weight, and compact size. For demonstration, a multilayer substrate integrated DR bandpass filter centered at X-band is designed and measured. Good agreement between the simulated and measured results can be observed, and the measured insertion loss at the passband center frequency (8.38 GHz) is 1.1 dB.
CrFeNiTix (x = 0.2, 0.3, 0.4, 0.5, and 0.6 molar ratio) compositionally complex alloys were fabricated by vacuum arc melting to investigate the microstructure, hardness, and compressive properties. The results revealed that CrFeNiTix alloys consisted of the principal face-centered cubic (FCC) phase and body-centered cubic (BCC) solid solution, with an amount of (Ni, Ti)-rich hexagonal close-packed phase. CrFeNiTix alloys exhibited the typical dendrite. Ti0.2 and Ti0.3 alloys were composed of FCC and BCC solid solutions in the dendrite, as well as ε (Ni3Ti) and R (Ni2.67Ti1.33) phases in the inter-dendrite, simultaneously. For Ti0.4, Ti0.5, and Ti0.6 alloys, (Fe, Cr)-rich solid solution separated out and ε phase transformed into R phase gradually. Meanwhile, TEM analysis indicated that Ti0.4 alloy matrix consisted of the principal FCC phase containing (Ni, Ti)-rich intragranular nanoprecipitates. The hardness values of CrFeNiTix alloys were increased with the addition of Ti content and the high compressive strength of CrFeNiTix alloys was maintained, which was attributed to the solid solution strengthening and precipitation hardening.
To investigate the protein-sparing effect of α-lipoic acid (LA), experimental fish (initial body weight: 18·99 (sd 1·82) g) were fed on a 0, 600 or 1200 mg/kg α-LA diet for 56 d, and hepatocytes were treated with 20 μm compound C, the inhibitor of AMP kinase α (AMPKα), treated for 30 min before α-LA treatment for 24 h. LA significantly decreased lipid content of the whole body and other tissues (P<0·05), and it also promoted protein deposition in vivo (P<0·05). Further, dietary LA significantly decreased the TAG content of serum and increased the NEFA content of serum (P<0·05); however, there were no significant differences among all groups in the hepatopancreas and muscle (P>0·05). Consistent with results from the experiment in vitro, LA activated phosphorylation of AMPKα and notably increased the protein content of adipose TAG lipase in intraperitoneal fat, hepatopancreas and muscle in vivo (P<0·05). Meanwhile, LA significantly up-regulated the mRNA expression of genes involved in fatty acid β-oxidation in the same three areas, and LA also obviously down-regulated the mRNA expression of genes involved in amino acid catabolism in muscle (P<0·05). Besides, it was observed that LA significantly activated the mammalian target of rapamycin (mTOR) pathway in muscle of experimental fish (P<0·05). LA could promote lipolysis and fatty acid β-oxidation via increasing energy supply from lipid catabolism, and then, it could economise on the protein from energy production to increase protein deposition in grass carp. Besides, LA might directly promote protein synthesis through activating the mTOR pathway.
Identifying the relative importance of urban and non-urban land-use types for potential denitrification derived N2O at a regional scale is critical for quantifying the impacts of human activities on nitrous oxide (N2O) emission under changing environments. In this study we used a regional dataset from China including 197 soil samples and six land-use types to evaluate the main predictors (land use, heavy metals, soil pH, soil moisture, substrate availability, functional and broad microbial abundances) of potential denitrification using multivariate and pathway analysis. Our results provide empirical evidence that soils on farms have the greatest potential denitrifying ability (PDA) (10.92±6.08ng N2O-N·g–1 dry soil·min–1) followed by urban soil (6.80±5.35ng N2O-N·g–1 dry soil·min–1). Our models indicate that land use (low vs. high human activity), followed by total nitrogen (TN) and heavy metals (Cu, Zn, Pb, Cd) was the most important driver of PDA. In addition, our path analysis suggests that at least part of the impacts of land use on potential denitrification were mediated via microbial abundance, soil pH and substrates including TN, dissolved organic carbon and nitrate. This study identifies the main predictors of denitrification at a regional scale which is needed to quantify the impact of human activities on ecosystem functionality under changing conditions.