We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a capsule endoscopy system with a sensing function is proposed for medical devices. A single-arm spiral antenna is designed for data transmission and is combined with the voltage controlled oscillator to achieve sensing capabilities. The designed antenna operates at a 900 MHz industrial scientific medical band. By establishing a three-layer cylindrical model of the stomach, it was concluded that the antenna in the stomach has a high peak gain of −1.1 dBi. Additionally, the antenna achieved a −10 dB impedance bandwidth of 5%. The capsule endoscopy was experimentally measured in both actual stomach and simulated environments. The maximum working distance of the capsule endoscope was measured to be 6.8 m. Additionally, the proposed capsule endoscope was tested for its sensing function using solutions with different dielectric constants. Finally, it was confirmed through link analysis that it has good communication capabilities. The results and analysis confirm that the proposed capsule endoscope can be used for examining gastric diseases.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
Alterations in brain functional connectivity (FC) have been frequently reported in adolescent major depressive disorder (MDD). However, there are few studies of dynamic FC analysis, which can provide information about fluctuations in neural activity related to cognition and behavior. The goal of the present study was therefore to investigate the dynamic aspects of FC in adolescent MDD patients.
Methods
Resting-state functional magnetic resonance imaging data were acquired from 94 adolescents with MDD and 78 healthy controls. Independent component analysis, a sliding-window approach, and graph-theory methods were used to investigate the potential differences in dynamic FC properties between the adolescent MDD patients and controls.
Results
Three main FC states were identified, State 1 which was predominant, and State 2 and State 3 which occurred less frequently. Adolescent MDD patients spent significantly more time in the weakly-connected and relatively highly-modularized State 1, spent significantly less time in the strongly-connected and low-modularized State 2, and had significantly higher variability of both global and local efficiency, compared to the controls. Classification of patients with adolescent MDD was most readily performed based on State 1 which exhibited disrupted intra- and inter-network FC involving multiple functional networks.
Conclusions
Our study suggests local segregation and global integration impairments and segregation-integration imbalance of functional networks in adolescent MDD patients from the perspectives of dynamic FC. These findings may provide new insights into the neurobiology of adolescent MDD.
This study assesses the difference in professional attitudes among medical students, both before and after coronavirus disease 2019 (COVID-19), and identifies the determinants closely associated with it, while providing precise and scientific evidence for implementing precision education on such professional attitudes.
Methods:
A pre-post-like study was conducted among medical students in 31 provinces in mainland China, from March 23, to April 19, 2021.
Results:
The proportion of medical students whose professional attitudes were disturbed after the COVID-19 pandemic, was significantly lower than before the COVID-19 pandemic (χ2 = 15.6216; P < 0.0001). Compared with the “undisturbed -undisturbed” group, the “undisturbed-disturbed” group showed that there was a 1.664-fold risk of professional attitudes disturbed as grade increased, 3.269-fold risk when others suggested they choose a medical career rather than their own desire, and 7.557-fold risk for students with COVID-19 in their family, relatives, or friends; while the “disturbed-undisturbed” group showed that students with internship experience for professional attitudes strengthened was 2.933-fold than those without internship experience.
Conclusions:
The professional attitudes of medical students have been strengthened during the COVID-19 pandemic. The results provide evidence of the importance of education on professional attitudes among medical students during public health emergencies.
The neuroanatomical alteration in bipolar II depression (BDII-D) and its associations with inflammation, childhood adversity, and psychiatric symptoms are currently unclear. We hypothesize that neuroanatomical deficits will be related to higher inflammation, greater childhood adversity, and worse psychiatric symptoms in BDII-D.
Methods
Voxel- and surface-based morphometry was performed using the CAT toolbox in 150 BDII-D patients and 155 healthy controls (HCs). Partial Pearson correlations followed by multiple comparison correction was used to indicate significant relationships between neuroanatomy and inflammation, childhood adversity, and psychiatric symptoms.
Results
Compared with HCs, the BDII-D group demonstrated significantly smaller gray matter volumes (GMVs) in frontostriatal and fronto-cerebellar area, insula, rectus, and temporal gyrus, while significantly thinner cortices were found in frontal and temporal areas. In BDII-D, smaller GMV in the right middle frontal gyrus (MFG) was correlated with greater sexual abuse (r = −0.348, q < 0.001) while larger GMV in the right orbital MFG was correlated with greater physical neglect (r = 0.254, q = 0.03). Higher WBC count (r = −0.227, q = 0.015) and IL-6 levels (r = −0.266, q = 0.015) was associated with smaller GMVs in fronto-cerebellar area in BDII-D. Greater positive symptoms was correlated with larger GMVs of the left middle temporal pole (r = 0.245, q = 0.03).
Conclusions
Neuroanatomical alterations in frontostriatal and fronto-cerebellar area, insula, rectus, temporal gyrus volumes, and frontal-temporal thickness may reflect a core pathophysiological mechanism of BDII-D, which are related to inflammation, trauma, and psychiatric symptoms in BDII-D.
The oscillatory Kelvin–Helmholtz (K–H) instability of a planar liquid sheet was experimentally investigated in the presence of an axial oscillating gas flow. An experimental system was initiated to study the oscillatory K–H instability. The surface wave growth rates were measured and compared with theoretical results obtained using the authors’ early linear method. Furthermore, in a larger parameter range experimentally studied, it is interesting that there are four different unstable modes: first disordered mode (FDM), second disordered mode (SDM), K–H harmonic unstable mode (KHH) and K–H subharmonic unstable mode (KHS). These unstable modes are determined by the oscillating amplitude, oscillating frequency and liquid inertia force. The frequencies of KHH are equal to the oscillating frequency; the frequency of KHS equals half the oscillating frequency, while the frequencies of FDM and SDM are irregular. By considering the mechanism of instability, the instability regime maps on the relative Weber number versus liquid Weber number (Werel–Wel) and the Weber number ratio versus the oscillating frequency (Werel/Wel–$\varOmega$s2) were plotted. Among these four modes, KHS is the most unexpected: the frequency of this mode is not equal to the oscillating frequency, but the surface wave can also couple with the oscillating gas flow. Linear instability theory was applied to divide the parameter range between the different unstable modes. According to linear instability theory, K–H and parametric unstable regions both exist. However, note that all four modes (KHH, KHS, FDM and SDM) corresponded primarily to the K–H unstable region obtained from the theoretical analysis. Nevertheless, the parametric unstable mode was also observed when the oscillating frequency and amplitude were relatively low, and the liquid inertia force was relatively high. The surface wave amplitude was small but regular, and the evolution of this wave was similar to that of Faraday waves. The wave oscillating frequency was half that of the surface wave.
Soft crawling robots have been significantly studied in recent decades. However, moving in amphibious environment, high payload capability, and passing through complex ground have always been challenges for soft crawling robots. For these problems, this article presents an amphibious soft-rigid wheeled crawling robot (SRWCR) consists of a soft-rigid body actuated by two soft pneumatic actuators (SPAs), four wheels, and four annular soft bladders (ASBs) as brakes. By programming the actuation sequences of the two SPAs and four ASBs, SRWCR can achieve two basic modes of locomotion: linear motion and turning. Based on the energy conservation law, we have developed analytical models to interpret the static actuation performance of SPA, including linear and bending deformations. Furthermore, with the help of fast response and waterproof of SPA and ASB, SRWCR can achieve a linear speed of 14.97 mm/s, a turning speed of 5.63°/s, and an underwater locomotion speed of 13 mm/s, which demonstrates the excellent locomotion performance of SRWCR in amphibious environment. In addition, SRWCR can also achieve multiple impressive functions, including carrying a payload of 2 kg at the moving speed of 11.18 mm/s, passing through various complex ground such as the grass ground and sand ground, and so on, obstacle navigation in confined space. Compared with the existing soft crawling robots, with the help of the soft-rigid body and wheeled structure, SRWCR has the best payload and passing capability, which indicates the potential advantage of SRWCR in the design of functional robots.
This survey examined and compared the disaster perception and preparedness of 2421 residents with and without chronic disease in Shenzhen, China.
Methods:
The participants were recruited and were asked to complete a survey in 2018.
Results:
Three types of disasters considered most likely to happen in Shenzhen were: typhoons (73.5% vs 74.9%), major transport accidents (61.5% vs 64.7%), and major fires (60.8% vs 63.0%). Only 5.9% and 5% of them, respectively, considered infectious diseases pandemics to be likely. There were significant differences between those with and without chronic disease in disaster preparedness, only a small percentage could be considered to have prepared for disaster (20.7% vs 14.5%). Logistic regression analyses showed that those aged 65 or older (odds ratio [OR] = 2.76), who had attained a Master’s degree or higher (OR = 2.0), and with chronic disease (OR = 1.38) were more prepared for disasters.
Conclusions:
Although participants with chronic disease were better prepared than those without, overall, Shenzhen residents were inadequately prepared for disasters and in need of public education.
The aim of this study was to investigate risk factors and psychological stress of health-care workers (HCWs) with coronavirus disease 2019 (COVID-19) in a nonfrontline clinical department.
Methods:
Data of 2 source patients and all HCWs with infection risk were obtained in a department in Wuhan from January to February 2020. A questionnaire was designed to evaluate psychological stress of COVID-19 on HCWs.
Results:
The overall infection rate was 4.8% in HCWs. Ten of 25 HCWs who contacted with 2 source patients were diagnosed with confirmed COVID-19 (8/10) and suspected COVID-19 (2/10). Other 2 HCWs were transmitted by other patients or colleagues. Close care behaviors included physical examination (6/12), life nursing (4/12), ward rounds (4/12), endoscopic examination (2/12). Contacts fluctuated from 1 to 24 times and each contact was short (8.1 min ± 5.6 min). HCWs wore surgical masks (11/12), gloves (7/12), and isolation clothing (3/12) when providing medical care. Most HCWs experienced a mild course with 2 asymptomatic infections, taking 9.8 d and 20.9 d to obtain viral shedding and clinical cure, respectively. Psychological stress included worry (58.3%), anxiety (83.3%), depression (58.3%), and insomnia (58.3%).
Conclusions:
Close contact with COVID-19 patients and insufficient protection were key risk factors. Precaution measures and psychological support on COVID-19 is urgently required for HCWs.
In the alloy materials, their mechanical properties mightly rely on the compositions and concentrations of chemical elements. Therefore, looking for the optimum elemental concentration and composition is still a critical issue to design high-performance alloy materials. Traditional alloy designing method via “trial and error” or domain experts’ experiences is barely possible to solve the issue. Here, we propose a “composition-oriented” method combined machine learning to design the Cu–Zn alloys with the high strengths, high ductility, and low friction coefficient. The method of separate training for each attribute label is used to study the effects of elemental concentrations on the mechanical properties of Cu–Zn alloys. Moreover, the elemental concentrations of new Cu–Zn alloys with the good mechanical properties are predicted by machine learning. The current results reveal the vital importance of the “composition-oriented” design method via machine learning for the development of high-performance alloys in a broad range of elemental compositions.
For the guarantee of the long-distance transport of the bunches of China Initiative Accelerator Driven System (CIADS), a new scheme is proposed that extra magnetic field is used in the accelerator-target coupling section before the windowless target to minimize the self-modulation (SM) mechanism. Particle-in-cell simulations are carried out to study the influence of the solenoidal magnetic field on the self-modulation mechanism when long proton bunches move in the background plasmas. The long proton bunches used in the simulations are similar to these in the linear accelerator of CIADS. It is found that the presence of the solenoidal magnetic field will significantly inhibit the self-modulation process. For the strong magnetic field, the longitudinal separation and transverse focusing of the long bunches disappear. We attribute these phenomena to the reason that the strong solenoidal magnetic field restricts the transverse movement of plasma electrons. Thus, there are not enough electrons around the bunch to compensate the space charge effect. Moreover, without transverse current, the longitudinal pinched effect disappears, and the long bunch can not be separated into small pulses anymore.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
The dipeptide dl-methionyl-dl-methionine (Met-Met) has extremely low water solubility and better absorption than other methionine sources (such as dl-methionine and l-methionine) available in the market. Therefore, six diets (D1, D2, D3, D4, D5 and D6) containing 0, 0·07, 0·15, 0·21, 0·28 and 0·38 % Met-Met were formulated to investigate the effects of Met-Met in juvenile Nile tilapia, Oreochromis niloticus (17 g initial body weight). The results indicated that percentage weight gain and specific growth rate of fish fed with D2 and D3 diets were higher than those fed with D1, D4–D6 diets. The levels of total essential amino acid in whole body of fish fed with D3 and D4 diets were significantly higher than those fed the D1 diet. Superoxide dismutase activity and malondialdehyde content have no significant difference in fish fed the diet with or without Met-Met supplementation. Majority of reads derived from the fish intestine belonged to members of Fusobacteria, followed by Bacteroidetes and Proteobacteria. Diversity of intestinal microbiota and total antioxidant capacity in fish fed with D3 diet was significantly higher than that of other groups. Based on the growth results, the authors conclude that the optimal level of Met is 0·61 % Met with the addition of 0·15 % Met-Met for grower-phase O. niloticus.
Although the streaked optical pyrometer (SOP) system has been widely adopted in shock temperature measurements, its reliability has always been of concern. Here, two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods. A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system. To verify the reliability of the SOP system, the relative deviation between the measured data and the standard value of less than 5% was calibrated out, which demonstrates the reliability of the SOP system. Furthermore, a method to analyze the uncertainty and sensitivity of the SOP system is proposed. A series of laser-induced shock experiments were conducted at the ‘Shenguang-II’ laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin. The measured temperature of the quartz in our experiments agreed fairly well with previous works, which serves as evidence for the reliability of the SOP system.
In order to solve joint-angle drift problem of dual redundant manipulators at acceleration-level, an acceleration-level tri-criteria optimization motion planning (ALTC-OMP) scheme is proposed, which combines the minimum acceleration norm, repetitive motion planning, and infinity-norm acceleration minimization solutions via weighting factor. This scheme can resolve the joint-angle drift problem of dual redundant manipulators which will arise in single criteria or bi-criteria scheme. In addition, the proposed scheme considers joint-velocity joint-acceleration physical limits. The proposed scheme can not only guarantee joint-velocity and joint-acceleration within their physical limits, but also ensure that final joint-velocity and joint-acceleration are near to zero. This scheme is realized by dual redundant manipulators which consist of left and right manipulators. In order to ensure the coordinated operation of manipulators, two motion planning problems are reformulated as two general quadratic program (QP) problems and further unified into one standard QP problem, which is solved by a simplified linear-variational-inequalities-based primal-dual neural network at the acceleration-level. Computer-simulation results based on dual PUMA560 redundant manipulators further demonstrate the effectiveness and feasibility of the proposed ALTC-OMP scheme to resolve joint-angle drift problem arising in the dual redundant manipulators.
Some convergence bounds of the minimal residual (MINRES) method are studied when the method is applied for solving Hermitian indefinite linear systems. The matrices of these linear systems are supposed to have some properties so that their spectra are all clustered around ±1. New convergence bounds depending on the spectrum of the coefficient matrix are presented. Some numerical experiments are shown to demonstrate our theoretical results.
Kawasaki disease, which is characterised by systemic vasculitides accompanied by acute fever, is regularly treated by intravenous immunoglobulin to avoid lesion formation in the coronary artery; however, the mechanism of intravenous immunoglobulin therapy is unclear. Hence, we aimed to analyse the global expression profile of serum exosomal proteins before and after administering intravenous immunoglobulin.
Methods
Two-dimensional electrophoresis coupled with mass spectrometry analysis was used to identify the differentially expressed proteome of serum exosomes in patients with Kawasaki disease before and after intravenous immunoglobulin therapy.
Results
Our analysis revealed 69 differential protein spots in the Kawasaki disease group with changes larger than 1.5-fold and 59 differential ones in patients after intravenous immunoglobulin therapy compared with the control group. Gene ontology analysis revealed that the acute-phase response disappeared, the functions of the complement system and innate immune response were enhanced, and the antibacterial humoral response pathway of corticosteroids and cardioprotection emerged after administration of intravenous immunoglobulin. Further, we showed that complement C3 and apolipoprotein A-IV levels increased before and decreased after intravenous immunoglobulin therapy and that the insulin-like growth factor-binding protein complex acid labile subunit displayed reverse alteration before and after intravenous immunoglobulin therapy. These observations might be potential indicators of intravenous immunoglobulin function.
Conclusions
Our results show the differential proteomic profile of serum exosomes of patients with Kawasaki disease before and after intravenous immunoglobulin therapy, such as complement C3, apolipoprotein A-IV, and insulin-like growth factor-binding protein complex acid labile subunit. These results may be useful in the identification of markers for monitoring intravenous immunoglobulin therapy in patients with Kawasaki disease.
The morphology, composition, and structure of precipitates in an Al–Si–Mg–Hf alloy after heat treatment at 560°C for 20 h were studied by means of Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy (HRTEM), and first-principle calculations. Precipitates with three kinds of morphologies were observed. The rectangular and square precipitates were predominantly (Si2−xAlx)Hf phases, while the nanobelt-like precipitate is the Si2Hf phase. First-principle calculations were used to show that the Si6 and Si8 sites were the most favorable sites for Al incorporation in the orthorhombic Si2Hf phase.
The Nihewan Basin is a key region for studying the Palaeolithic archaeology of East Asia. However, because of the lack of suitable dating methods and representative lithic technologies in this region, the ‘Middle Palaeolithic’ sites in this basin have been designated based mainly on stratigraphic correlation, which may be unreliable. In this study, three Palaeolithic sites, Motianling, Queergou and Banjingzi, which have been assigned previously to the ‘Middle Palaeolithic’, are dated based on luminescence dating of K-feldspar grains. Our results show that the cultural layers at Motianling, Queergou and Banjingzi have ages of 315 ± 13, 268 ± 13 and 86 ± 4 ka (corresponding to Marine Isotope Stages 9, 8 and 5), respectively, suggesting that Motianling and Queergou should be assigned to the Lower Palaeolithic, while the age of Banjingzi is consistent with a Middle Palaeolithic attribution. Our results suggest that reassessing the age of ‘Middle Palaeolithic’ sites in the Nihewan Basin, and elsewhere in North China, is crucial for understanding the presence or absence of the Middle Palaeolithic phase in China. Our dating results also indicate that the Sanggan River developed sometime between about 270 and 86 ka ago.
In this paper, we consider the transform magnetic (TM) model of electromagnetic scattering in the cavity. By the Polynomial Preserving Recovery technique, we present superconvergence analysis for the vertex-edge-face type finite element. From the numerical example, we can see that the provided method is efficient and stable.