We describe a meniscus coating method to produce high-laser damage threshold, silica/alumina sol-gel multilayer reflectors on 30+ cm substrates for laser-fusion applications. This process involves forcing a small suspension flow through a porous applicator tube, forming a falling film on the tube. A substrate contacts this film to form a meniscus. Motion of the substrate relative to the applicator entrains a thin film on the substrate, which leaves behind a porous, optical quality film upon solvent evaporation. We develop a solution for the entrained film thickness as a function of geometry, flow and fluid properties by an analysis similar to that of the classical dip-coating problem. This solution is compared with experimental measurements. Also, preliminary results of multilayer coating experiments with a prototype coater are presented, which focus on coating uniformity and laser damage threshold (LDT).