Critical-zone reactions involve inorganic and biogenic colloids in a cation-rich environment. The present research defines the rates and structure of purified Mg-montmorillonite aggregates formed in the presence of monovalent (K+) and divalent (Ca2+, Mg 2+) cations using light-extinction measurements. Time evolution of turbidity was employed to determine early-stage aggregation rates. Turbidity spectra were used to measure the fractal dimension at later stages. The power law dependence of the stability ratios on cation concentration was found to vary with the reciprocal of the valence rather than the predicted reciprocal of valence-squared, indicating that the platelet structure may be a factor influencing aggregation rates. The critical coagulation concentrations (CCC) (3 mM for CaCl2, 4 mM for MgCl2, and 70 mM for KCl) were obtained from the stability ratios. At a later time and above a minimal cation concentration, turbidity reached a quasi-stable state, indicating the formation of large aggregates. Under this condition, an approximate turbidity forward-scattering correction factor was applied and the fractal dimension was determined from the extinction spectra. For the divalent cations, the fractal dimensions were 1.65 ± 0.3 for Ca2+ and 1.75 ± 0.3 for Mg2+ and independent of cation concentrations above the CCC. For the monovalent cation, the fractal dimension increased with K+ concentration from 1.35 to 1.95, indicating a transition to a face-to-face geometry from either an edge-to-edge or edge-to-face orientation.