We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The coronavirus disease 2019 (COVID-19) has greatly impacted health-care systems worldwide, leading to an unprecedented rise in demand for health-care resources. In anticipation of an acute strain on established medical facilities in Dallas, Texas, federal officials worked in conjunction with local medical personnel to convert a convention center into a Federal Medical Station capable of caring for patients affected by COVID-19. A 200,000 square foot event space was designated as a direct patient care area, with surrounding spaces repurposed to house ancillary services. Given the highly transmissible nature of the novel coronavirus, the donning and doffing of personal protective equipment (PPE) was of particular importance for personnel staffing the facility. Furthermore, nationwide shortages in the availability of PPE necessitated the reuse of certain protective materials. This article seeks to delineate the procedures implemented regarding PPE in the setting of a COVID-19 disaster response shelter, including workspace flow, donning and doffing procedures, PPE conservation, and exposure event protocols.
Aberrant activity of the subcallosal cingulate (SCC) is a common theme across pharmacologic treatment efficacy prediction studies. The functioning of the SCC in psychotherapeutic interventions is relatively understudied, as are functional differences among SCC subdivisions. We conducted functional connectivity analyses (rsFC) on resting-state functional magnetic resonance imaging (fMRI) data, collected before and after a course of cognitive behavioral therapy (CBT) in patients with major depressive disorder (MDD), using seeds from three SCC subdivisions.
Methods.
Resting-state data were collected from unmedicated patients with current MDD (Hamilton Depression Rating Scale-17 > 16) before and after 14-sessions of CBT monotherapy. Treatment outcome was assessed using the Beck Depression Inventory (BDI). Rostral anterior cingulate (rACC), anterior subcallosal cingulate (aSCC), and Brodmann’s area 25 (BA25) masks were used as seeds in connectivity analyses that assessed baseline rsFC and symptom severity, changes in connectivity related to symptom improvement after CBT, and prediction of treatment outcomes using whole-brain baseline connectivity.
Results.
Pretreatment BDI negatively correlated with pretreatment rACC ~ dorsolateral prefrontal cortex and aSCC ~ lateral prefrontal cortex rsFC. In a region-of-interest longitudinal analysis, rsFC between these regions increased post-treatment (p < 0.05FDR). In whole-brain analyses, BA25 ~ paracentral lobule and rACC ~ paracentral lobule connectivities decreased post-treatment. Whole-brain baseline rsFC with SCC did not predict clinical improvement.
Conclusions.
rsFC features of rACC and aSCC, but not BA25, correlated inversely with baseline depression severity, and increased following CBT. Subdivisions of SCC involved in top-down emotion regulation may be more involved in cognitive interventions, while BA25 may be more informative for interventions targeting bottom-up processing. Results emphasize the importance of subdividing the SCC in connectivity analyses.
Brain health diplomacy aims to influence the global policy environment for brain health (i.e. dementia, depression, and other mind/brain disorders) and bridges the disciplines of global brain health, international affairs, management, law, and economics. Determinants of brain health include educational attainment, diet, access to health care, physical activity, social support, and environmental exposures, as well as chronic brain disorders and treatment. Global challenges associated with these determinants include large-scale conflicts and consequent mass migration, chemical contaminants, air quality, socioeconomic status, climate change, and global population aging. Given the rapidly advancing technological innovations impacting brain health, it is paramount to optimize the benefits and mitigate the drawbacks of such technologies.
Objective:
We propose a working model of Brain health INnovation Diplomacy (BIND).
Methods:
We prepared a selective review using literature searches of studies pertaining to brain health technological innovation and diplomacy.
Results:
BIND aims to improve global brain health outcomes by leveraging technological innovation, entrepreneurship, and innovation diplomacy. It acknowledges the key role that technology, entrepreneurship, and digitization play and will increasingly play in the future of brain health for individuals and societies alike. It strengthens the positive role of novel solutions, recognizes and works to manage both real and potential risks of digital platforms. It is recognition of the political, ethical, cultural, and economic influences that brain health technological innovation and entrepreneurship can have.
Conclusions:
By creating a framework for BIND, we can use this to ensure a systematic model for the use of technology to optimize brain health.
The growing availability of mobile technologies has contributed to an increase in mobile-assisted language learning in which learners can autonomously study a second language (L2) anytime or anywhere (e.g. Kukulska-Hulme, Lee & Norris, 2017; Reinders & Benson, 2017). Research investigating the effectiveness of such study for L2 learning, however, has been limited, especially regarding large-scale commercial L2 learning apps, such as Duolingo. Although one commissioned research study found favorable language learning outcomes (Vesselinov & Grego, 2012), limited independent research has reported issues related to learner persistence, motivation, and program efficacy (Lord, 2015; Nielson, 2011). The current study investigates the semester-long learning experiences and results of nine participants learning Turkish on Duolingo. The participants showed improvement on L2 measures at the end of the study, and results indicate a positive, moderate correlation between the amount of time spent on Duolingo and learning gains. In terms of perceptions of their experiences, the participants generally viewed Duolingo’s flexibility and gamification aspects positively; however, variability in motivation to study and frustration with instructional materials were also expressed.
Cognitive behavioral therapy (CBT) is an effective treatment for many patients suffering from major depressive disorder (MDD), but predictors of treatment outcome are lacking, and little is known about its neural mechanisms. We recently identified longitudinal changes in neural correlates of conscious emotion regulation that scaled with clinical responses to CBT for MDD, using a negative autobiographical memory-based task.
Methods
We now examine the neural correlates of emotional reactivity and emotion regulation during viewing of emotionally salient images as predictors of treatment outcome with CBT for MDD, and the relationship between longitudinal change in functional magnetic resonance imaging (fMRI) responses and clinical outcomes. Thirty-two participants with current MDD underwent baseline MRI scanning followed by 14 sessions of CBT. The fMRI task measured emotional reactivity and emotion regulation on separate trials using standardized images from the International Affective Pictures System. Twenty-one participants completed post-treatment scanning. Last observation carried forward was used to estimate clinical outcome for non-completers.
Results
Pre-treatment emotional reactivity Blood Oxygen Level-Dependent (BOLD) signal within hippocampus including CA1 predicted worse treatment outcome. In contrast, better treatment outcome was associated with increased down-regulation of BOLD activity during emotion regulation from time 1 to time 2 in precuneus, occipital cortex, and middle frontal gyrus.
Conclusions
CBT may modulate the neural circuitry of emotion regulation. The neural correlates of emotional reactivity may be more strongly predictive of CBT outcome. The finding that treatment outcome was predicted by BOLD signal in CA1 may suggest overgeneralized memory as a negative prognostic factor in CBT outcome.
The impact of dementia-related stressors and strains have been examined for their potential to threaten the well-being of either the person with dementia or the family care partner, but rarely have studies considered the dyadic nature of well-being in dementia. The purpose of this study was to examine the dyadic effects of multiple dimensions of strain on the well-being of dementia care dyads.
Methods:
Using multilevel modeling to account for the inter-relatedness of individual well-being within dementia care dyads, we examined cross-sectional responses collected from 42 dyads comprised of a hospitalized patient diagnosed with a primary progressive dementia (PWD) and their family care partner (CP). Both PWDs and CPs self-reported on their own well-being using measures of quality of life (QOL-Alzheimer’s Disease scale) and depressive symptoms (Center for Epidemiological Studies Depression Scale).
Results:
In adjusted models, the PWD’s well-being (higher QOL and lower depressive symptoms) was associated with significantly less strain in the dyad’s relationship. The CP’s well-being was associated with significantly less care-related strain and (for QOL scale) less relationship strain.
Conclusions:
Understanding the impact of dementia on the well-being of PWDs or CPs may require an assessment of both members of the dementia care dyad in order to gain a complete picture of how dementia-related stressors and strains impact individual well-being. These results underscore the need to assess and manage dementia-related strain as a multi-dimensional construct that may include strain related to the progression of the disease, strain from providing care, and strain on the dyad’s relationship quality.
Externalizing disorders are known to be partly heritable, but the biological pathways linking genetic risk to the manifestation of these costly behaviors remain under investigation. This study sought to identify neural phenotypes associated with genomic vulnerability for externalizing disorders.
Methods
One-hundred fifty-five White, non-Hispanic veterans were genotyped using a genome-wide array and underwent resting-state functional magnetic resonance imaging. Genetic susceptibility was assessed using an independently developed polygenic score (PS) for externalizing, and functional neural networks were identified using graph theory based network analysis. Tasks of inhibitory control and psychiatric diagnosis (alcohol/substance use disorders) were used to measure externalizing phenotypes.
Results
A polygenic externalizing disorder score (PS) predicted connectivity in a brain circuit (10 nodes, nine links) centered on left amygdala that included several cortical [bilateral inferior frontal gyrus (IFG) pars triangularis, left rostral anterior cingulate cortex (rACC)] and subcortical (bilateral amygdala, hippocampus, and striatum) regions. Directional analyses revealed that bilateral amygdala influenced left prefrontal cortex (IFG) in participants scoring higher on the externalizing PS, whereas the opposite direction of influence was observed for those scoring lower on the PS. Polygenic variation was also associated with higher Participation Coefficient for bilateral amygdala and left rACC, suggesting that genes related to externalizing modulated the extent to which these nodes functioned as communication hubs.
Conclusions
Findings suggest that externalizing polygenic risk is associated with disrupted connectivity in a neural network implicated in emotion regulation, impulse control, and reinforcement learning. Results provide evidence that this network represents a genetically associated neurobiological vulnerability for externalizing disorders.
The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013. (~6σ below the 1981–2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt ~50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change.
To assess the burden of bloodstream infections (BSIs) among pediatric hematology-oncology (PHO) inpatients, to propose a comprehensive, all-BSI tracking approach, and to discuss how such an approach helps better inform within-center and across-center differences in CLABSI rate
DESIGN
Prospective cohort study
SETTING
US multicenter, quality-improvement, BSI prevention network
PARTICIPANTS
PHO centers across the United States who agreed to follow a standardized central-line–maintenance care bundle and track all BSI events and central-line days every month.
METHODS
Infections were categorized as CLABSI (stratified by mucosal barrier injury–related, laboratory-confirmed BSI [MBI-LCBI] versus non–MBI-LCBI) and secondary BSI, using National Healthcare Safety Network (NHSN) definitions. Single positive blood cultures (SPBCs) with NHSN defined common commensals were also tracked.
RESULTS
Between 2013 and 2015, 34 PHO centers reported 1,110 BSIs. Among them, 708 (63.8%) were CLABSIs, 170 (15.3%) were secondary BSIs, and 232 (20.9%) were SPBCs. Most SPBCs (75%) occurred in patients with profound neutropenia; 22% of SPBCs were viridans group streptococci. Among the CLABSIs, 51% were MBI-LCBI. Excluding SPBCs, CLABSI rates were higher (88% vs 77%) and secondary BSI rates were lower (12% vs 23%) after the NHSN updated the definition of secondary BSI (P<.001). Preliminary analyses showed across-center differences in CLABSI versus secondary BSI and between SPBC and CLABSI versus non-CLABSI rates.
CONCLUSIONS
Tracking all BSIs, not just CLABSIs in PHO patients, is a patient-centered, clinically relevant approach that could help better assess across-center and within-center differences in infection rates, including CLABSI. This approach enables informed decision making by healthcare providers, payors, and the public.
To determine the clinical diagnoses associated with the National Healthcare Safety Network (NHSN) pneumonia (PNEU) or lower respiratory infection (LRI) surveillance events
DESIGN
Retrospective chart review
SETTING
A convenience sample of 8 acute-care hospitals in Pennsylvania
PATIENTS
All patients hospitalized during 2011–2012
METHODS
Medical records were reviewed from a random sample of patients reported to the NHSN to have PNEU or LRI, excluding adults with ventilator-associated PNEU. Documented clinical diagnoses corresponding temporally to the PNEU and LRI events were recorded.
RESULTS
We reviewed 250 (30%) of 838 eligible PNEU and LRI events reported to the NHSN; 29 reported events (12%) fulfilled neither PNEU nor LRI case criteria. Differences interpreting radiology reports accounted for most misclassifications. Of 81 PNEU events in adults not on mechanical ventilation, 84% had clinician-diagnosed pneumonia; of these, 25% were attributed to aspiration. Of 43 adult LRI, 88% were in mechanically ventilated patients and 35% had no corresponding clinical diagnosis (infectious or noninfectious) documented at the time of LRI. Of 36 pediatric PNEU events, 72% were ventilator associated, and 70% corresponded to a clinical pneumonia diagnosis. Of 61 pediatric LRI patients, 84% were mechanically ventilated and 21% had no corresponding clinical diagnosis documented.
CONCLUSIONS
In adults not on mechanical ventilation and in children, most NHSN-defined PNEU events corresponded with compatible clinical conditions documented in the medical record. In contrast, NHSN LRI events often did not. As a result, substantial modifications to the LRI definitions were implemented in 2015.
The geologic setting of the Ziegler Reservoir fossil site is somewhat unusual — the sediments containing the Pleistocene fossils were deposited in a lake on top of a ridge. The lake basin was formed near Snowmass Village, Colorado (USA) when a glacier flowing down Snowmass Creek Valley became thick enough to overtop a low point in the eastern valley wall and entered the head of Brush Creek Valley. When the glacier retreated at about 155–130 ka, near the end of Marine Oxygen Isotope Stage 6, the Brush Creek Valley lobe left behind a moraine that impounded a small alpine lake. The lake was initially ~ 10 m deep and appears to have been highly productive during most of its existence, based on the abundant and exquisitely preserved organic material present in the sediments. Over time, the basin slowly filled with (mostly) eolian sediment such that by ~ 87 ka it contained a marsh or wetland rather than a true lake. Open-water conditions returned briefly between ~ 77 and 55 ka before the impoundment was finally breached to the east, establishing ties with the Brush Creek drainage system and creating an alpine meadow that persisted until historic times.
Studies of terrestrial biotic and environmental dynamics of Marine Oxygen Isotope Stage (MIS) 5, also called the Last Interglacial Period, provide insight into the effects of long-term climate change on Pleistocene ecosystems. In North America, however, there are relatively few fossil sites that definitively date to MIS 5. Even fewer contain multiple ecosystem components (vertebrates, invertebrates, plants) that have been studied in detail, and none are located at high elevation. Thus, our view of North American ecosystems during MIS 5 is, at best, an incomplete composite view, and alpine ecosystems are entirely undocumented.
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.
Oesophageal perforation is a rarely reported complication of transoesophageal echocardiography in infants. This case involves a 3.1-kg neonate with Trisomy 21, atrioventricular septal defect, and hypoplastic aortic arch undergoing aortic arch advancement and pulmonary artery banding. A paediatric transoesophageal echocardiography probe was placed intraoperatively causing a contained false passage from the oesophagus below the cricopharyngeus muscle with extension into the left posterior mediastinum. The perforation healed within 2 weeks without permanent sequelae after conservative medical management.