We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
This qualitative study investigates how the Electronic Patient-Reported Outcome (ePRO) mobile application and portal system, designed to capture patient-reported measures to support self-management, affected primary care provider workflows.
Background
The Canadian health system is facing an ageing population that is living with chronic disease. Disruptive innovations like mobile health technologies can help to support health system transformation needed to better meet the multifaceted needs of the complex care patient. However, there are challenges with implementing these technologies in primary care settings, in particular the effect on primary care provider workflows.
Methods
Over a six-week period interdisciplinary primary care providers (n=6) and their complex care patients (n=12), used the ePRO mobile application and portal to collaboratively goal-set, manage care plans, and support self-management using patient-reported measures. Secondary thematic analysis of focus groups, training sessions, and issue tracker reports captured user experiences at a Toronto area Family Health Team from October 2014 to January 2015.
Findings
Key issues raised by providers included: liability concerns associated with remote monitoring, increased documentation activities due to a lack of interoperability between the app and the electronic patient record, increased provider anxiety with regard to the potential for the app to disrupt and infringe upon appointment time, and increased demands for patient engagement. Primary care providers reported the app helped to focus care plans and to begin a collaborative conversation on goal-setting. However, throughout our investigation we found a high level of provider resistance evidenced by consistent attempts to shift the app towards fitting with existing workflows rather than adapting much of their behaviour. As health systems seek innovative and disruptive models to better serve this complex patient population, provider change resistance will need to be addressed. New models and technologies cannot be disruptive in an environment that is resisting change.
Smellmelon is becoming a problem weed in southern Texas and Louisiana cotton-producing areas. Experiments evaluating the density and duration of smellmelon competition are necessary for the recommendation of appropriate control practices to minimize yield loss. In 1999 and 2000, field experiments were initiated to determine the density, critical period of competition, and potential control measures for smellmelon in cotton. Although the degree of competition differed between the years, similar trends were observed with respect to smellmelon density. As few as 2 or 3 smellmelon plants 10 m−1 row reduced yield at least 17% each year. When densities were increased to 5 or 10 plants 10 m−1 row, yield reductions increased to at least 34%. Results from the duration of smellmelon competition in 1999 and 2000 indicated that cotton should remain smellmelon free for 1 to 7 wk after planting (WAP) and 2.5 to 6 WAP, respectively. Results from the control studies indicate that smellmelon size at application influences control. Early-season control strategies are necessary to reduce yield losses associated with smellmelon competition.
Field experiments were conducted near Beaumont, TX, to evaluate red rice control in imidazolinone-tolerant rice. Imazethapyr was applied preplant incorporated (PPI) and preemergence (PRE) at 70 and 105 g ai/ha and postemergence (POST) at 36, 52, and 70 g/ha. Single imazethapyr applications were made at each rate and timing and in sequential PPI or PRE followed by POST treatments. Red rice control ranged from 92 to 98% with sequential imazethapyr applications. Red rice control was higher when imazethapyr was applied PPI alone than PRE alone. But when these treatments were followed by a POST application of imazethapyr, there were no differences in red rice control between PPI and PRE application. Red rice control with sequential treatments was not improved with increased rates of imazethapyr POST. Visual injury to the 93AS3510 imidazolinone-tolerant variety was 5% or less 20 d after treatment (DAT), and there was no injury by 45 DAT. But POST applications of 70 g/ha imazethapyr may produce minor yield reductions to this experimental variety without improving red rice control. Results indicate that an imidazolinone-tolerant rice production system can be effective for controlling red rice and that PRE applications must be followed by a POST application to achieve maximum red rice control. PPI applications of imazethapyr at 70 g/ha should also be followed by a POST application to maximize red rice control.
KIH-485 is an experimental herbicide being evaluated for preemergence weed control in corn. Field experiments were conducted in Burleson County, Texas, in 2003 and 2004 to compare weed control, corn tolerance, and corn yield with various rates of KIH-485 or S-metolachlor. Each herbicide was applied in single preemergence applications at four rates, or in combination with atrazine. KIH-485 at 500 g ai/ha provided better Texas panicum control than S-metolachlor by 9 WAT. KIH-485 or S-metolachlor treatments controlled Palmer amaranth at least 91% at all evaluation dates. In 2003, no other treatment controlled velvetleaf better than 500 g/ha KIH-485. The following year, all KIH-485 rates above 125 g/ha controlled velvetleaf better than any rate of S-metolachlor alone. Moreover, KIH-485 controlled all weed species as good as or better than S-metolachlor plus atrazine, regardless of KIH-485 rate. There was no significant corn injury observed, and grain yield reflected the effects of weed control.
Where did pottery first appear in the Old World? Statistical modelling of radiocarbon dates suggests that ceramic vessel technology had independent origins in two different hunter-gatherer societies. Regression models were used to estimate average rates of spread and geographic dispersal of the new technology. The models confirm independent origins in East Asia (c. 16000 cal BP) and North Africa (c. 12000 cal BP). The North African tradition may have later influenced the emergence of Near Eastern pottery, which then flowed west into Mediterranean Europe as part of a Western Neolithic, closely associated with the uptake of farming.
This article introduces a method of exploratory analysis of the geographical factors influencing large-scale innovation diffusion, and illustrates its application to the case of early pottery dispersal in the Old World. Regression techniques are used to identify broad-scale spatiotemporal trends in the innovation's first occurrence, and regression residuals are then analyzed to identify geographical variation (climate, biomes) that may have influenced local rates of diffusion. The boundaries between the modeled diffusion zones segregate the western half of the map into a Eurasian hunter-gatherer pottery-using zone affiliated by cultural descent to the Siberian center of innovation, and a lower-latitude farming and pastoralist zone affiliated by cultural descent to the north African center of innovation. However, the correlation coefficients suggest that this baseline model has limited explanatory power, with geographical patterning in the residuals indicating that habitat also greatly affected rates of spread of the new technology. Earlier-than-predicted ages for early pottery tend to occur in locations with mean annual temperature in the range approximately 0–15°. This favorable temperature range typically includes Mediterranean, grassland, and temperate forest biome types, but of these, the Mediterranean and the temperate deciduous forest biomes are the only ones on which regression residuals indicate earlier-than-predicted first observed pottery dates.
At Sellafield, the Post Operational Clean Out (POCO) of solids from the base of the highly active waste storage tanks, in preparation for decommissioning, will result in a high molybdenum stream which will be vitrified using the current Waste Vitrification Plant (WVP). In order to minimise the number of containers required for POCO, the high molybdenum feed could be co-vitrified by addition to reprocessing waste, using the borosilicate glass formulation currently utilised on WVP. Co-vitrification of high molybdenum feeds has been carried out using non-active simulants, both in the laboratory and on the Vitrification Test Rig (VTR) which is a full scale working replica of a WVP processing line.
In addition, a new borosilicate glass formulation containing calcium has been developed by NNL which allows a higher incorporation of molybdenum through the formation of a durable CaMoO4 phase, after the solubility limit of molybdenum in the glass has been reached. Vitrification of the high molybdenum feed in the presence of varying quantities of reprocessing waste liquor using the new glass formulation has been carried out in the laboratory. Up to ∼10 wt% MoO3 could be incorporated without any detrimental phase separation in the product glass, but increasing the fraction of reprocessing waste was found to decrease the MoO3 incorporation. Soxhlet and static powder leach tests have been performed to assess the durability of the glass products. This paper discusses the results of the vitrification of high molybdenum feeds in the presence of reprocessing liquor in both the borosilicate glass formulation currently utilised on WVP and the modified formulation which contain calcium.
We study the influence of environment on emission line properties using the Galaxy And Mass Assembly (GAMA) survey, taking care to disentangle the role of mass and environment. We look at the role of local density separating galaxies into classifications star forming, AGN, and SF/AGN composite using the BPT diagnostic diagram. We find that environment is generally less important as a driving factor than galaxy mass. The presence of emission lines, whether driven by star formation or central supermassive black hole activity mostly depends on galaxy mass consistently for all galaxy types.
The infiltration of porous and particulate materials for metallographic examination with low-melting alloys was first described by Rose and DeRoos . The use of Wood's metal to fill porosity in sandstone was reported by Craze , by Dullien , and by Yadev et al. . Changes in pore structure and phase dispersions in iron ore pellets after simulated blast furnace reduction were reported by Shultz et al. , wherein liquid Bi-Sn impregnation was used to prepare cross sections of deformed and reduced pellets for backscatter electron imaging. Steele and Engelalso applied the technique to examine the microstructure in commercial boron nitride (BN). In that study porosity formed by leaching the B2O3 phase was filled with liquid metal to allow argon-ion etching to expose the BN microstructure. The characterization of cracks and porosity in cement-based materials after filling with Wood's metal has been reported by Nemati et al. . Cracks developed during compression testing of marble were studied by in-situ metal impregnation in Chang et al. .
Understanding how conceptual structures inform stone tool production and use would help us resolve the issue of a pongid-hominid dichotomy in brain organisation and cognitive ability. Evidence from ideational apraxia suggests that the planning of linguistic and manipulative behaviours is not colocalized in homologous circuits. An alternative account in terms of the evolutionary expansion of the whole prefrontal-premotor area may be more plausible.
This paper describes the results from static leach tests using the ASTM International standard Materials Characterisation Centre (MCC-1) and Product Consistency Test (PCT) protocols for inactive High Level Waste (HLW) glasses fabricated at full scale on the Sellafield Vitrification Test Rig. The samples comprised monoliths and powders of a 75:25 Oxide:Magnox Blend glass with 31 wt% waste incorporation and a Magnox-only glass with 35 wt% waste incorporation. The tests were carried out in de-ionized water at 90 °C for durations up to 42 days and normalized mass losses calculated.
The results of MCC-1 and PCT tests on both 31 wt% Blend and 35 wt% Magnox glasses, showing measurable differences to the corresponding standard 25 wt% waste incorporation glasses, are presented. A series of Scanning Electron Microscopy (SEM) investigations were also undertaken. The variation in composition and thickness of the alteration layer with sample type and duration is reported.
In this review and position paper we explore the neural substrates for manual specialization and their possible connection with language and speech. We focus on two contrasting hypotheses of the origins of language and manual specialization: the language-first scenario and the tool-use-first scenario. Each one makes specific predictions about hand-use in non-human primates, as well as about the necessity of an association between speech adaptations and population-level right-handedness in the archaeological and fossil records. The concept of handedness is reformulated for archaeologists in terms of manual role specialization, using Guiard's model of asymmetric bimanual coordination. This focuses our attention on skilled bimanual tasks in which both upper limbs play complementary roles. We review work eliciting non-human primate hand preferences in co-ordinated bimanual tasks, and relevant archaeological data for estimating the presence or absence of a population-level bias to the right hand as the manipulator in extinct hominin species and in the early prehistory of our own species.
Sellafield Ltd operates 3 vitrification lines to convert highly active concentrate liquor arising as a waste product of reprocessing operations into glass for safe interim storage in the Vitrified Product Store (VPS) prior to long term disposal.
Highly Active Liquor (HAL) is stored in Highly Active Storage Tanks and transferred to WVP in batches to the liquid stock tank. It is metered in a semi-continuous batch operation to a calciner (rotating tube furnace) where it is converted into an oxide powder (calcine). Glass frit is fed at the lower end of the calciner where it discharges into an Inconel melter vessel controlled at approximately 1100 C. The glass and calcine are melted together and then poured into a container as a batch operation. After two pours the container is allowed to cool, a lid is then fitted to the container, which after further cooling is welded to the container. This container is then cleaned and transferred to the VPS.
Platinoid species containing ruthenium, rhodium and palladium present in the HAL form insoluble oxide phases in the glass product. The platinoid concentration in the glass will increase with increasing waste oxide loading to an extent that settling of the platinoids in the glass may occur, leading to heel enrichment, poor melter performance and difficulty in draining the melter. The viscosity will also increase, which may require higher melter temperatures to mix and pour the molten glass and could result in enhanced corrosion of the melter.
Inactive laboratory scale experiments with different glass frit formulations have been performed to determine whether product quality could be maintained with higher platinoid concentrations. Operational envelopes with existing formulations were expanded to observe laboratory trial performance and determine any changes to resulting glass qualities. Also, glasses with high waste incorporations have been produced to test process capability and to ascertain any potential phase separation or devitrification issues that could affect either the process or product performance. Physical properties of the different glass formulations were performed to measure changes in viscosity, density and the rates of settling to examine the amount of phase separation that can occur.
The results have shown that ruthenium, palladium or rhodium were insoluble in the melt and were not evenly distributed throughout the glass but clustered together. These results will be used as a basis for further development work. This paper presents some findings of these experiments.