We study the existence of various sign and value patterns in sequences defined by multiplicative functions or related objects. For any set $A$ whose indicator function is ‘approximately multiplicative’ and uniformly distributed on short intervals in a suitable sense, we show that the density of the pattern $n+1\in A$, $n+2\in A$, $n+3\in A$ is positive as long as $A$ has density greater than $\frac{1}{3}$. Using an inverse theorem for sumsets and some tools from ergodic theory, we also provide a theorem that deals with the critical case of $A$ having density exactly $\frac{1}{3}$, below which one would need nontrivial information on the local distribution of $A$ in Bohr sets to proceed. We apply our results first to answer in a stronger form a question of Erdős and Pomerance on the relative orderings of the largest prime factors $P^{+}(n)$, $P^{+}(n+1),P^{+}(n+2)$ of three consecutive integers. Second, we show that the tuple $(\unicode[STIX]{x1D714}(n+1),\unicode[STIX]{x1D714}(n+2),\unicode[STIX]{x1D714}(n+3))~(\text{mod}~3)$ takes all the $27$ possible patterns in $(\mathbb{Z}/3\mathbb{Z})^{3}$ with positive lower density, with $\unicode[STIX]{x1D714}(n)$ being the number of distinct prime divisors. We also prove a theorem concerning longer patterns $n+i\in A_{i}$, $i=1,\ldots ,k$ in approximately multiplicative sets $A_{i}$ having large enough densities, generalizing some results of Hildebrand on his ‘stable sets conjecture’. Finally, we consider the sign patterns of the Liouville function $\unicode[STIX]{x1D706}$ and show that there are at least $24$ patterns of length $5$ that occur with positive upper density. In all the proofs, we make extensive use of recent ideas concerning correlations of multiplicative functions.