We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An old conjecture of Z. Tuza says that for any graph G, the ratio of the minimum size, τ3(G), of a set of edges meeting all triangles to the maximum size, ν3(G), of an edge-disjoint triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that for any fixed, positive α there are arbitrarily large graphs G of positive density satisfying τ3(G) > (1 − o(1))|G|/2 and ν3(G) < (1 + α)|G|/4.
Let be a set of terms over an arbitrary (but finite) number of Boolean variables. Let U() be the set of truth assignments that satisfy exactly one term in . Motivated by questions in computational complexity, Rudich conjectured that there exist ∊, δ > 0 such that, if is any set of terms for which U() contains at least a (1−∊)-fraction of all truth assignments, then there exists a term t ∈ such that at least a δ-fraction of assignments satisfy some term of sharing a variable with t [8].
We prove a stronger version: for any independent assignment of the variables (not necessarily the uniform one), if the measure of U() is at least 1 − ∊, there exists a t ∈ such that the measure of the set of assignments satisfying either t or some term incompatible with t (i.e., having no satisfying assignments in common with t) is at least . (A key part of the proof is a correlation-like inequality on events in a finite product probability space that is in some sense dual to Reimer's inequality [11], a.k.a. the BKR inequality [5], or the van den Berg–Kesten conjecture [3].)
We consider relations between thresholds for monotone set properties and simple lower bounds for such thresholds. A motivating example (Conjecture 2): Given an n-vertex graph H, write pE for the least p such that, for each subgraph H' of H, the expected number of copies of H' in G=G(n, p) is at least 1, and pc for that p for which the probability that G contains (a copy of) H is 1/2. Then (conjecture) pc=O(pElog n). Possible connections with discrete isoperimetry are also discussed.
Let $P(n)$ and $C(n)$ denote, respectively, the maximum possible numbers of Hamiltonian paths and Hamiltonian cycles in a tournament on n vertices. The study of $P(n)$ was suggested by Szele [14], who showed in an early application of the probabilistic method that $P(n) \geq n!2^{-n+1}$, and conjectured that $\lim ( {P(n)}/ {n!} )^{1/n}= 1/2.$ This was proved by Alon [2], who observed that the conjecture follows from a suitable bound on $C(n)$, and showed $C(n) <O(n^{3/2}(n-1)!2^{-n}).$ Here we improve this to $C(n)<O\big(n^{3/2-\xi}(n-1)!2^{-n}\big),$ with $\xi = 0.2507$… Our approach is mainly based on entropy considerations.
It is shown that the hard-core model on ${{\mathbb Z}}^d$ exhibits a phase transition at activities above some function $\lambda(d)$ which tends to zero as $d\rightarrow \infty$. More precisely, consider the usual nearest neighbour graph on ${{\mathbb Z}}^d$, and write ${\cal E}$ and ${\cal O}$ for the sets of even and odd vertices (defined in the obvious way). Set $${\cal G}L_M={\cal G}L_M^d =\{z\in{{\mathbb Z}}^d:\|z\|_{\infty}\leq M\},\quad \partial^{\star} {\cal G}L_M =\{z\in{{\mathbb Z}}^d:\|z\|_{\infty}= M\},$$ and write ${\cal I}({\cal G}L_M)$ for the collection of independent sets (sets of vertices spanning no edges) in ${\cal G}L_M$. For $\lambda>0$ let ${\bf I}$ be chosen from ${\cal I}({\cal G}L_M)$ with $\Pr({\bf I}=I) \propto \lambda^{|I|}$.
TheoremThere is a constant$C$such that if$\lambda > Cd^{-1/4}\log^{3/4}d$, then$$\lim_{M\rightarrow\infty}\Pr(\underline{0}\in{\bf I}|{\bf I}\supseteq \partial^{\star} {\cal G}L_M\cap {\cal E})~> \lim_{M\rightarrow\infty}\Pr(\underline{0}\in{\bf I}| {\bf I}\supseteq \partial^{\star} {\cal G}L_M\cap {\cal O}).$$ Thus, roughly speaking, the influence of the boundary on behaviour at the origin persists as the boundary recedes.
We use entropy ideas to study hard-core distributions on the independent sets of a finite,
regular bipartite graph, specifically distributions according to which each independent
set I is chosen with probability proportional to λ[mid ]I[mid ]
for some fixed λ > 0. Among the
results obtained are rather precise bounds on occupation probabilities; a ‘phase transition’
statement for Hamming cubes; and an exact upper bound on the number of independent
sets in an n-regular bipartite graph on a given number of vertices.
Fix q and let Mn be an n × n
matrix with entries drawn independently from the finite field
Fq according to some distribution μn.
It is shown that, except in certain pathological cases,
the probability that Mn is nonsingular is asymptotically the same as for uniform entries;
that is,
[Formula here]
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.