We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quality-adjusted life-years (QALYs) and disability-adjusted life-years (DALYs) are commonly used in cost-effectiveness analysis (CEA) to measure health benefits. We sought to quantify and explain differences between QALY- and DALY-based cost-effectiveness ratios, and explore whether using one versus the other would materially affect conclusions about an intervention's cost-effectiveness.
Methods
We identified CEAs using both QALYs and DALYs from the Tufts Medical Center CEA Registry and Global Health CEA Registry, with a supplemental search to ensure comprehensive literature coverage. We calculated absolute and relative differences between the QALY- and DALY-based ratios, and compared ratios to common benchmarks (e.g., 1× gross domestic product per capita). We converted reported costs into US dollars.
Results
Among eleven published CEAs reporting both QALYs and DALYs, seven focused on pharmaceuticals and infectious disease, and five were conducted in high-income countries. Four studies concluded that the intervention was “dominant” (cost-saving). Among the QALY- and DALY-based ratios reported from the remaining seven studies, absolute differences ranged from approximately $2 to $15,000 per unit of benefit, and relative differences from 6–120 percent, but most differences were modest in comparison with the ratio value itself. The values assigned to utility and disability weights explained most observed differences. In comparison with cost-effectiveness thresholds, conclusions were consistent regardless of the ratio type in ten of eleven cases.
Conclusions
Our results suggest that although QALY- and DALY-based ratios for the same intervention can differ, differences tend to be modest and do not materially affect comparisons to common cost-effectiveness thresholds.
The strong-coupling mode, called the “quasimode”, is excited by stimulated Brillouin scattering (SBS) in high-intensity laser–plasma interactions. Also SBS of the quasimode competes with SBS of the fast mode (or slow mode) in multi-ion species plasmas, thus leading to a low-frequency burst behavior of SBS reflectivity. Competition between the quasimode and the ion-acoustic wave (IAW) is an important saturation mechanism of SBS in high-intensity laser–plasma interactions. These results give a clear explanation of the low-frequency periodic burst behavior of SBS and should be considered as a saturation mechanism of SBS in high-intensity laser–plasma interactions.
This paper proposes an adaptive guidance law for attacking a ground target based on motion camouflage strategy. The coefficients of normal and bi-normal feedback guidance law are given according to the relative motion relationship under Frenet frame. Utilizing the coefficients, the motion camouflage proportional guidance law is derived. In order to improve the initial overload characteristic of the missile, an adaptive feedback coefficient is introduced. Then, the adaptive guidance law is applied to a longitudinal plane interception problem with impact-angle constraint. Finally, the validity of this guidance law for air-to-ground missiles is proved by simulations.
To explore the effects of maternal nutrition on offspring muscle characteristics, a total of 56 sows were assigned to one of the four dietary groups during gestation: control (CON), or control diets supplemented with methyl donor (MET), bisphenol A (BPA), and combined BPA and MET (BPA+MET). Compared with CON offspring, MET offspring showed a higher meat redness value, but lower glycogen content in the longissimus thoracis (LT). Moreover, compared with CON offspring, MET offspring showed lower LT glycogen synthase (GS) mRNA levels at birth and the finishing stage, and increased methylation at the GS promoter. Prenatal BPA exposure reduced the pH and redness value of meat, but increased the lightness value, lactate content, glycolytic potential and lactate dehydrogenase (LDH) enzyme activity in the LT muscle. Prenatal BPA exposure increased LDH mRNA levels in the LT muscle at birth and the finishing stage, and reduced methylation at the LDH promoter. Thus, maternal MET affects muscle GS and LDH expression via DNA methylation, thereby resulting in persistent effects on pork quality.
Background: We investigated motor function associations with age, gender, and D4Z4 fragment size among participants with infantile FSHD. Methods: We collected standardized motor assessments including goniometry, manual muscle testing (MMT), quantitative muscle testing (QMT), and FSHD clinical severity scores (CSS) at 12 CINRG sites. To measure associations, we used linear regression models adjusted for age at enrollment, onset of weakness, gender, and D4Z4 repeats. Results: 53 participants (59% female, mean age 23.1±14.6 years) were enrolled. Weakness was most pronounced at the shoulder girdle and rectus abdominis (median MMT 30-38% of normal). Older enrollment age was associated with greater CSS (p=0.005) and reduced range of motion in shoulder abduction, shoulder flexion, elbow flexion, and ankle dorsiflexion (all p<0.01). Females and participants with larger D4Z4 repeats had milder shoulder/arm weakness and lesser disease severity (all p<0.05). Increased age at onset of facial weakness was significantly associated with greater total muscle strength, as measured by QMT and MMT (both p=0.002). Conclusions: We confirm the descending pattern of muscle involvement and milder disease severity in females or those with larger D4Z4 repeats. Furthermore, earlier age at onset of facial weakness was associated with greater muscle weakness. Future longitudinal assessments will describe rates of disease progression in this population.
The genetic influences in human brain structure and function and impaired functional connectivities are the hallmarks of the schizophrenic brain. To explore how common genetic variants affect the connectivities in schizophrenia, we applied genome-wide association studies assaying the abnormal neural connectivities in schizophrenia as quantitative traits.
Method
We recruited 161 first-onset and treatment-naive patients with schizophrenia and 150 healthy controls. All the participants underwent scanning with a 3 T-magnetic resonance imaging scanner to acquire structural and functional imaging data and genotyping using the HumanOmniZhongHua-8 BeadChip. The brain-wide association study approach was employed to account for the inherent modular nature of brain connectivities.
Results
We found differences in four abnormal functional connectivities [left rectus to left thalamus (REC.L–THA.L), left rectus to right thalamus (REC.L–THA.R), left superior orbital cortex to left thalamus (ORBsup.L–THA.L) and left superior orbital cortex to right thalamus (ORBsup.L–THA.R)] between the two groups. Univariate single nucleotide polymorphism (SNP)-based association revealed that the SNP rs6800381, located nearest to the CHRM3 (cholinergic receptor, muscarinic 3) gene, reached genomic significance (p = 1.768 × 10−8) using REC.L–THA.R as the phenotype. Multivariate gene-based association revealed that the FAM12A (family with sequence similarity 12, member A) gene nearly reached genomic significance (nominal p = 2.22 × 10–6, corrected p = 0.05).
Conclusions
Overall, we identified the first evidence that the CHRM3 gene plays a role in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia. Identification of these genetic variants using neuroimaging genetics provides insights into the causes of variability in human brain development, and may help us determine the mechanisms of dysfunction in schizophrenia.
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
Suicide in China has declined since the 1990s. However, there has been limited investigation of the potential spatiotemporal variation and social determinants of suicide during subsequent periods.
Method
Annual suicide counts from 2006 to 2012 stratified by county, 5-year age group (⩾15 years) and gender were obtained from the Chinese Disease Surveillance Points system. Trends and geographic differentials were examined using multilevel negative binomial regression models to explore spatiotemporal variation in suicide, and the role of key sociodemographic factors associated with suicide.
Results
The suicide rate (per 100 000) in China decreased from 14.7 to 9.1, 2006–2012. Rates of suicide were higher in males than females and increased substantially with age. Suicide rates were higher in rural areas compared with urban areas; however, urban–rural disparities reduced over time with a faster decline for rural areas. Within both urban and rural areas, higher rates of suicide were evident in areas with lower socio-economic circumstances (SEC) [rate ratio (RR) 1.85, 95% confidence interval (CI) 1.31–2.62]. Suicide rates varied more than twofold (median RR 2.06) across counties, and were highest in central and southwest regions of China. A high proportion of the divorced population, especially for younger females, was associated with lower suicide rates (RR 0.60, 95% CI 0.46–0.79).
Conclusions
Geographic variations for suicide should be taken into account in policy making, particularly for older males living in rural areas and urban areas with low SEC. Measures to reduce disparities in socio-economic level and alleviate family relation stress are current priorities.
We determined the prevalence and seasonality of infections by Fasciola of goats and bovine species (cattle and water buffalo) in Hubei and Anhui provinces of China. Faecal samples were collected at 2- to 3-month intervals from 200 goats in Hubei province and from 152 bovine species in Anhui province. All faecal samples were examined for the presence of parasites. We determined the nucleotide sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA (rDNA) of 39 Fasciola worms from Anhui province. The prevalence of Fasciola infection in goats ranged between 3.5 and 37.0%, with mean eggs per gram (EPG) ranging between 29.0 and 166.0. Prevalence and EPG exhibited downward trends over time with significant differences. The prevalence of Fasciola infection in cattle ranged between 13.3 and 46.2% (mean EPG, 36.4–100.0), and that of water buffalo ranged between 10.3 and 35.4% (mean EPG, 25.0–89.6), with a higher prevalence of infection and EPG from June to October compared with December to March. Analysis of ITS-1 and ITS-2 sequences revealed that F. hepatica and F. gigantica were present in all bovine species of Anhui province and that F. gigantica mainly infected water buffalo. This is the first demonstration of Fasciola infection in Hubei province and detection of F. hepatica and F. gigantica in Anhui province. The present study of Hubei province shows that mass treatment of livestock with closantel sodium injections in April and August/September controlled Fasciola infection effectively.
The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72–231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array’s radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).
The need for higher energy density batteries has spawned recent renewed interest in alternatives to lithium ion batteries, including multivalent chemistries that theoretically can provide twice the volumetric capacity if two electrons can be transferred per intercalating ion. Initial investigations of these chemistries have been limited to date by the lack of understanding of the compatibility between intercalation electrode materials, electrolytes, and current collectors. This work describes the utilization of hybrid cells to evaluate multivalent cathodes, consisting of high surface area carbon anodes and multivalent nonaqueous electrolytes that are compatible with oxide intercalation electrodes. In particular, electrolyte and current collector compatibility was investigated, and it was found that the carbon and active material play an important role in determining the compatibility of PF6-based multivalent electrolytes with carbon-based current collectors. Through the exploration of electrolytes that are compatible with the cathode, new cell chemistries and configurations can be developed, including a magnesium-ion battery with two intercalation host electrodes, which may expand the known Mg-based systems beyond the present state of the art sulfide-based cathodes with organohalide-magnesium based electrolytes.
To investigate whether single nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) 3 and 9 affect the susceptibility of hepatitis B virus (HBV) intrauterine transmission, we genotyped 399 neonates for TLR3 (c.1377C/T) [rs3775290] and TLR9 (G2848A) [rs352140] using polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). A femoral venous blood sample was obtained from these subjects. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were measured using chemiluminescence immunoassay kits and hepatitis B virus DNA (HBV DNA) levels were determined by fluorescence quantitative PCR assay. Our results showed that when adjusting for maternal HBeAg, maternal HBV DNA and mode of delivery, allele ‘T’ for SNP c.1377C/T was significantly associated with HBV intrauterine transmission susceptibility [adjusted OR (aOR) 0·55, 95% confidence interval (CI) 0·34–0·91, P = 0·020] and the TT genotype decreased the risk of HBV intrauterine transmission (aOR 0·28, 95% CI 0·09–0·91, P = 0·033). Allele ‘A’ for SNP G2848A was significantly associated with HBV intrauterine transmission susceptibility (aOR 0·62, 95% CI 0·39–1·00, P = 0·048) and the GA genotype protected neonates from HBV intrauterine transmission (aOR 0·45, 95% CI 0·22–0·93, P = 0·031). The TLR3 (c.1377C/T) and TLR9 (G2848A) polymorphisms may be relevant for HBV intrauterine transmission susceptibility, although the reduction in risk to HBV intrauterine transmission is modest and the biological mechanism of the observed association merits further investigation.
In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to Dome A, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5°×4.5° field of view (FOV). Based on the CSTAR data, initial statistics of astronomical observational site quality and light curves of variable objects were obtained. To reach higher photometric quality, we are continuing to work to overcome the effects of uneven cirrus cloud cirrus, optical “ghosts” and intra-pixel sensitivity. The snow surface stability is also tested for further astronomical observational instrument and for glaciology studies.
Here the synthesis of hydroxy-telechelic four-arm star-shaped oligotetrahydrofuran (4PTHF) with controllable molecular weight was explored, which was perfomed as living cationic ring-opening polymerization of THF using pentaerythritol and trifluoromethanesulfonicanhydride as initiation system. The molecular weights of the 4PTHF were a function of the reaction time. A polymer network was prepared from the hydroxy-telechelic 4PTHF precursor by crosslinking with diisocyanate and the shape-memory properties were determined. High values for Rf and Rr > 98% were obtained even at high programmed elongations, which suggest the 4PTHF-network as a promising shape-memory material. These materials might have a great potential, as the upscaling of synthesis could be successfully demonstrated.
High performance all-polymer aerogels are not only interesting for their low thermal conductivity, but also for their mechanical strength and their conversion to porous carbons. The prevalent design rule dictates that crosslinking at the monomer level decreases solubility of the developing polymer and induces phase separation of nanoparticles with high surface to volume ratios. Hence, hyperbranched structures based on trifunctional single aromatic core monomers should have enhanced interparticle connectivity and rigidity compared to those based on either difunctional or multiple aromatic core monomers. That design rule is applied here to hyperbranched polyurethane (PU) aerogels synthesized from tris(4-isocyanatophenyl)methane (TIPM) and 1,1,1-tris(4-hydroxyphenyl)ethane (HPE) in anhydrous acetone using dibutyltin dilaurate (DBTDL) as catalyst. The resulting materials vary from highly flexible to rigid as the monomer concentration increases. FTIR and 13C solid NMR confirm formation of urethane. SEM shows that the flexible variety is macroporous with a beaded worm-like structure, while the rigid variety is mesoporous and nanoparticulate. Lower-density flexible aerogels are highly porous (92%) with surface area of 132 m2 g-1, while the rigid ones have higher surface areas, up to 256 m2 g-1. Polyurethane aerogels from other triols and diols, e.g., phloroglucinol (POL) and resorcinol (RES), respectively, have also been studied and for similar monomer concentrations shrinkage and bulk density increases.
Aerogels are quasi-stable, low-density, three-dimensional assemblies of nanoparticles, but they are commonly associated with poor mechanical properties. The most successful efforts to improve their mechanical properties involve cross-linking of the skeletal nanoparticles with polymers. However, post gelation cross-linking is time-consuming. Hence, it is reasonable to seek robust all-polymer aerogels among polymers known for their high mechanical strength. As a result, here we report the facile one-pot synthesis of a new class of Kevlar-like aerogels based on the rather underutilized reaction of multifunctional isocyanates and carboxylic acids. The resulting materials are up to 84% v/v porous with surface areas as high as 380 m2 g-1. The ultimate compressive strength per unit density is within 10% equal to that of Kevlar 49. The high specific energy absorption (37 J g-1) and Styrofoam-like thermal conductivity (0.028 W m-1 K-1) combined with thermal stability up to 350 °C render aramid aerogels multifunctional materials suitable for defense, civil and transportation related applications. Upon pyrolysis at 800 °C they can be converted to 80% (v/v) porous, electrically conducting carbons with surface areas as high as 474 m2 g-1.
We compare the characteristics of ferrogels prepared with and without the presence of a uniform magnetic field using Fe3O4 and Fe2O3 nanoparticles immobilized in hydrogels of N-isopropylacrylamide. The spatial distribution and agglomeration of the nanoparticles within the ferrogels were investigated using ultra small angle x-ray scattering (USAXS) and transmission electron microscopy (TEM). Hydrated ferrogels were also studied for magnetization using direct current superconducting quantum interference device (DC-SQUID). Volume size distribution resulting from USAXS data of the Fe3O4-ferrogel prepared under a uniform 225 G magnetic field showed a single broad peak appreciably different from that prepared without magnetic field with three distinct peaks. Volume size distributions resulting from USAXS data of the Fe2O3-ferrogel prepared with and without the presence of a uniform magnetic field both similarly show two peaks. Nanoparticle agglomeration was also determined by analyzing TEM images of ferrogel samples. DC-SQUID measurements of Fe3O4-ferrogel prepared in the presence of a uniform magnetic field showed 9% higher magnetization compared to the Fe3O4-ferrogel prepared without magnetic field. Similarly, DC-SQUID measurements of Fe2O3-ferrogel prepared in the presence of a uniform magnetic field showed 3% higher magnetization compared to the Fe2O3-ferrogel prepared without magnetic field. Thus, the presence of a uniform magnetic field during ferrogel polymerization can enabled the enhancement of the magnetoelastic property of the ferrogel.
GaN nanowires and nanorods have been successfully synthesized on Si (111) substrates by magnetron sputtering through ammoniating Ga2O3/Nb thin films and the effects of ammoniation temperatures on growth of GaN nanowires and nanorods were analyzed in detail. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were carried out to characterize microstructures, morphologies, and optical properties of GaN samples. The results demonstrate that sample after ammoniation at 950 °C is single crystal GaN with hexagonal wurtzite structure and high crystalline quality, having the size of 30 - 80 nm in diameter. After ammoniation at 1000 °C, GaN nanorods appear with smooth and clean surface and more than 100 nm in diameter. The optical properties of GaN nanowires grown at 950 °C and nanorods grown at 1000 °C are best with strong emission intensities.
Gas-filled Time Projection Chambers (TPCs) with Gas Electron Multipliers (GEMs) and pixels appear suitable for direction-sensitive WIMP dark matter searches. We present the background and motivation for our work on this technology, past and ongoing prototype work, and a development path towards an affordable, 1-m3-scale directional dark matter detector, D3. Such a detector may be particularly suitable for low-mass WIMP searches, and perhaps sufficiently sensitive to clearly determine whether the signals seen by DAMA, CoGeNT, and CRESST-II are due to low-mass WIMPs or background.