We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In support of the ICRF experiments planned on the Wendelstein 7-X (W7-X) stellarator, i.e. fast ion generation, wall conditioning, target plasma production and heating, a first experimental study on plasma production has been made in the Uragan-2M (U-2M) stellarator using W7-X-like two-strap antenna. In all the experiments, antenna monopole phasing was used. The W7-X-like antenna operation with launched radiofrequency power of ~100 kW have been performed in helium (p = (4–14) × 10−2 Pa) with the vacuum vessel walls pre-loaded with hydrogen. Production of plasma with a density higher than 1012 cm−3 was observed near the first harmonic of the hydrogen cyclotron frequency. Operation at first hydrogen harmonic is feasible in W7-X future ICRF experiments.
Étudier la qualité de vie liée à la santé (QVS) et ses déterminants chez des adolescents consultant pour syndrome de Gilles de la Tourette (SGT).
Méthode
Après hétéro-évaluation par la YGTSS et la CY-BOCS, la QVS des adolescents était mesurée à l’aide de 3 questionnaires d’autoévaluation (SF-36, VSP-A, CHAQ). Des contrôles appariés sur l’âge et le sexe ont rempli les mêmes questionnaires. Les parents des patients et des contrôles ont renseigné les questionnaires sociodémographique et médical, la CBCL et deux hétéroévaluations de la QVS des adolescents (VSP P et CHAQ parents). Tous les participants avaient donné leur consentement éclairé.
Résultats
Pour les 75 adolescents (14,8 ans, DS = 1,8 ; 80 % de garçons) inclus, le score YGTSS moyen était de 33,9 (DS = 20). Pour la CBCL, le score total, les scores symptômes internalisés et symptômes externalisés étaient limites/pathologiques pour 39,4 %, 52,1 % et 33,3 % des adolescents respectivement. La QVS des adolescents SGT était significativement altérée comparée aux contrôles pour toutes les dimensions de la SF-36, pour les dimensions vitalité, relations avec les pairs et loisirs de la VSP A et pour le score total de la CHAQ. On retrouvait des corrélations négatives significatives entre les scores Tics moteurs et sévérité globale de la YGTSS et les dimensions psychologiques et sociales du SF-36, une corrélation positive entre le score Tics vocaux de la YGTSS et le score total à la CHAQ. Les adolescents avec des scores CBCL total et symptômes internalisés limites/pathologiques avaient des scores significativement plus bas sur plusieurs dimensions de QVS.
Conclusion
Les dimensions physiques, psychologiques et sociales de la QVS sont altérées chez les adolescents SGT. La sévérité des tics, les difficultés émotionnelles et comportementales ont un impact négatif sensible sur les dimensions physiques, psychologiques et sociales de la QVS chez les adolescents SGT.
Pharmacogenetics in schizophrenia comprises pharmacokinetical and pharmacodynamical aspects as well as an approach to identify candidate genes associated with therapy response or side effects. Firstly focussing on classical drug targets like dopaminergic or serotonergic receptors, currently also developmental and regulatory genes presumably associated with effects of antipsychotic therapy are identified. The aim of this study was to investigate associations between therapy response in schizophrenic patients and different polymorphisms previously been identified within a genome wide array in rodents treated with MK-801 and/or haloperidol combined with some well-known schizophrenia candidate genes. We genotyped for 200 different polymorphisms in 285 schizophrenic patients, who were treated with different antipsychotics within randomized controlled trials. Psychopathology was measured weekly using the PANSS scale. Correlations between psychopathology and genotypes were calculated by using a linear model (ANCOVA).
We found significant associations between some well-known candidate genes (e.g. D2-, 5HT1A-, and α1A-receptors) and different PANSS subscales at baseline and after four weeks of antipsychotic treatment considered as therapy response. Furthermore we also identified several significant associations between some genes introduced from the animal model and psychopathology at baseline and towards therapy response. Some of them were formerly described in the literature (e.g. Homer1, Phospholipase C and Transthyretin), but most of them have not been related to schizophrenia or antipsychotic treatment by now (e.g. PLEKHA6, CLIC6 and SOSTDC1).
This indicates an involvement of genes in the pathophysiology of schizophrenia apart from yet known candidate genes and might further help in detecting differential therapy response in individuals with schizophrenia.
Applying sufficient tensile strain to Ge leads to a direct bandgap group IV semiconductor, which emits in the mid-infrared (MIR) wavelength range. However, highly strained-Ge cannot be directly grown on Si because of its large lattice mismatch. In this work, we have developed a process based on Ge micro-bridge strain redistribution intentionally landed to the Si substrate. Traction arms were then partially etched to keep locally strained-Ge micro-blocks. Large tunable uniaxial stresses up to 4.2% strain were demonstrated in Ge, which was bonded on Si. Our approach allows envisioning integrated strained-Ge on Si platform for MIR-integrated optics. Silicon photonics merge optical and electronic components that can be integrated together onto a single microchip.
Cannabis use shows a robust dose-dependent relationship with psychosis risk among the general population. Despite this, it has been difficult to link cannabis use with risk for transitioning to a psychotic disorder among individuals at ultra-high risk (UHR) for psychosis. The present study examined UHR transition risk as a function of cannabis use characteristics which vary substantially between individuals including age of first use, cannabis abuse severity and a history of cannabis-induced attenuated psychotic symptoms (APS).
Method
Participants were 190 UHR individuals (76 males) recruited at entry to treatment between 2000 and 2006. They completed a comprehensive baseline assessment including a survey of cannabis use characteristics during the period of heaviest use. Outcome was transition to a psychotic disorder, with mean time to follow-up of 5.0 years (range 2.4–8.7 years).
Results
A history of cannabis abuse was reported in 58% of the sample. Of these, 26% reported a history of cannabis-induced APS. These individuals were 4.90 (95% confidence interval 1.93–12.44) times more likely to transition to a psychotic disorder (p = 0.001). Greater severity of cannabis abuse also predicted transition to psychosis (p = 0.036). However, this effect was mediated by higher abuse severity among individuals with a history of cannabis-induced APS.
Conclusions
Findings suggest that cannabis use poses risk in a subpopulation of UHR individuals who manifest cannabis-induced APS. Whether this reflects underlying genetic vulnerability requires further study. Nevertheless, findings reveal an important early marker of risk with potentially significant prognostic utility for UHR individuals.
Interventions based on the experience sampling method (ESM) are ideally suited to provide insight into personal, contextualized affective patterns in the flow of daily life. Recently, we showed that an ESM-intervention focusing on positive affect was associated with a decrease in symptoms in patients with depression. The aim of the present study was to examine whether ESM-intervention increased patient empowerment.
Methods
Depressed out-patients (n = 102) receiving psychopharmacological treatment who had participated in a randomized controlled trial with three arms: (i) an experimental group receiving six weeks of ESM self-monitoring combined with weekly feedback sessions, (ii) a pseudo-experimental group participating in six weeks of ESM self-monitoring without feedback, and (iii) a control group (treatment as usual only). Patients were recruited in the Netherlands between January 2010 and February 2012. Self-report empowerment scores were obtained pre- and post-intervention.
Results
There was an effect of group × assessment period, indicating that the experimental (B = 7.26, P = 0.061, d = 0.44, statistically imprecise) and pseudo-experimental group (B = 11.19, P = 0.003, d = 0.76) increased more in reported empowerment compared to the control group. In the pseudo-experimental group, 29% of the participants showed a statistically reliable increase in empowerment score and 0% reliable decrease compared to 17% reliable increase and 21% reliable decrease in the control group. The experimental group showed 19% reliable increase and 4% reliable decrease.
Conclusions
These findings tentatively suggest that self-monitoring to complement standard antidepressant treatment may increase patients’ feelings of empowerment. Further research is necessary to investigate long-term empowering effects of self-monitoring in combination with person-tailored feedback.
We investigated particle acceleration and shock structure associated with an unmagnetized
relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated
in the trailing shock contribute to the electrons transverse deflection and acceleration.
We have calculated, self-consistently, the radiation from electrons accelerated in these
turbulent magnetic fields. We found that the synthetic spectra depend on the bulk Lorentz
factor of the jet, its temperature and strength of the generated magnetic fields. We have
also investigated accelerated electrons in strong magnetic fields generated by kinetic
shear (Kelvin-Helmholtz) instabilities. The calculated properties of the emerging
radiation will guide our understanding of the complex time evolution and/or spectral
structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.
The hydrogen uptake and redistribution in Zircaloy-4 specimens applied to loss of coolant accident (LOCA) simulation experiments and in mechanical pre-loaded samples were investigated by means of ex-situ and in-situ neutron imaging. The results of these investigations were compared with results from mechanical tests. Hydrogen absorption may have a strong influence on the mechanical properties of zirconium alloys. A local enrichment of the absorbed hydrogen may result in brittle fracture at these positions in the tensile test. On the other hand, stress fields in the material affect the hydrogen uptake as well as its distribution in the material. In-situ investigations confirmed the existence of an initial oxide layer formed at room temperature by contact with air. This oxide layer suppresses the hydrogen uptake until dissolution in the zirconium matrix.
Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs in the shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and for particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The “jitter” radiation from deflected electrons in turbulent magnetic fields has properties different from synchrotron radiation calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure of gamma-ray bursts, relativistic jets in general, and supernova remnants. In order to calculate radiation from first principles and go beyond the standard synchrotron model, we have used PIC simulations. We present synthetic spectra to compare with the spectra obtained from Fermi observations.