We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To examine the utility of video-based monitoring systems (VMSs) for auditing hand hygiene compliance according to the World Health Organization (WHO) Five Moments.
Design:
Pragmatic quasi-experimental observation trial.
Setting:
The New South Wales Biocontainment Centre, Westmead, New South Wales, Australia.
Participants:
Volunteer healthcare workers (HCWs).
Method:
Six high-fidelity simulations were recorded and subsequently assessed for their ability to audit hand hygiene compliance according to the WHO Five Moments for hand hygiene criteria using tools provided by the National Hand Hygiene Initiative (NHHI).
Results:
In total, 206 minutes of recorded footage were reviewed in 120 minutes, yielding 111 moments. Overall HCW hand hygiene compliance was 88% according to the WHO Five Moments framework. The cost per moment was $0.91 AUD ($0.66 USD) and the time required per moment was 64 seconds.
Conclusions:
Auditing of hand hygiene compliance according to all 5 of the WHO Five Moments from recorded footage is not only possible but provides cost and time savings. In addition, the process may produce output that is less subject to the biases inherent in direct human observational auditing.
To investigate the downstream rim seal gas ingestion characteristics of a 1.5-stage turbine, the URANS equations were solved numerically using the SST turbulence model. The effects of different purge flow rates and the second vane on the ingestion characteristics of the aft cavity and the nonuniform fluctuations of the main gas path pressure are analysed. The results showed that the aft cavity is affected by the combined effects of the blade and the second vane, and the potential field at the leading edge of the second vane greatly influence the airflow variation in the aft cavity, which enhances the ingress of the mainstream into the wheel-space. The front purge flow weakens the egress between the suction side of the blade and the suction side of the second vane. The potential field at the leading edge of the second vane suppresses the nonuniform distribution of airflow in the aft cavity caused by the rotational effect of the blade.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
The present paper uses the detailed flow data produced by direct numerical simulation (DNS) of a three-dimensional, spatially developing plane free shear layer to assess several commonly used turbulence models in compressible flows. The free shear layer is generated by two parallel streams separated by a splitter plate, with a naturally developing inflow condition. The DNS is conducted using a high-order discontinuous spectral element method (DSEM) for various convective Mach numbers. The DNS results are employed to provide insights into turbulence modelling. The analyses show that with the knowledge of the Reynolds velocity fluctuations and averages, the considered strong Reynolds analogy models can accurately predict temperature fluctuations and Favre velocity averages, while the extended strong Reynolds analogy models can correctly estimate the Favre velocity fluctuations and the Favre shear stress. The pressure–dilatation correlation and dilatational dissipation models overestimate the corresponding DNS results, especially with high compressibility. The pressure–strain correlation models perform excellently for most pressure–strain correlation components, while the compressibility modification model gives poor predictions. The results of an a priori test for subgrid-scale (SGS) models are also reported. The scale similarity and gradient models, which are non-eddy viscosity models, can accurately reproduce SGS stresses in terms of structure and magnitude. The dynamic Smagorinsky model, an eddy viscosity model but based on the scale similarity concept, shows acceptable correlation coefficients between the DNS and modelled SGS stresses. Finally, the Smagorinsky model, a purely dissipative model, yields low correlation coefficients and unacceptable accumulated errors.
The extent of the reduction of maize (Zea mays L.) kernel moisture content through drying is closely related to field temperature (or accumulated temperature; AT) following maturation. In 2017 and 2018, we selected eight maize hybrids that are widely planted in Northeastern China to construct kernel drying prediction models for each hybrid based on kernel drying dynamics. In the traditional harvest scenario using the optimal sowing date (OSD), maize kernels underwent drying from 4th September to 5th October, with variation coefficients of 1.0–1.9. However, with a latest sowing date (LSD), drying occurred from 14th September to 31st October, with variation coefficients of 1.3–3.0. In the changed harvest scenario, the drying time of maize sown on the OSD condition was from 12th September to 9th November with variation coefficients of 1.3–3.0, while maize sown on the LSD had drying dates of 26th September to 28th October with variation coefficients of 1.5–3.6. In the future harvest scenario, the Fengken 139 (FK139) and Jingnongke 728 (JNK728) hybrids finished drying on 20th October and 8th November, respectively, when sown on the OSD and had variation coefficients of 2.7–2.8. Therefore, the maize kernel drying time was gradually delayed and was associated with an increased demand for AT ⩾ 0°C late in the growing season. Furthermore, we observed variation among different growing seasons likely due to differences in weather patterns, and that sowing dates impact variations in drying times to a greater extent than harvest scenarios.
The compressibility effects on energy exchange mechanisms in a three-dimensional, spatially developing plane free shear layer are investigated via data produced by direct numerical simulation. The compressible shear layer is simulated using a high-order discontinuous spectral element method for convective Mach numbers $M_c = 0.3$, 0.5 and 0.7. The energy exchange mechanisms in the flow are examined by analysing the budget terms of mean kinetic, internal and turbulent kinetic energy transport equations, in both transition and turbulent regions. The results show that turbulent production, turbulent viscous dissipation, mean viscous dissipation, pressure dilatation and enthalpic production are the main mechanisms responsible for energy exchange among different forms of energy. The effects of compressibility on energy transfer mechanisms are studied based on the analyses of those five budget terms. The primary budget terms evolve differently in the transition and turbulent regions and change significantly for varying compressibility. In the transition region, a double-peak variation becomes a single peak in the streamwise profile of the turbulent production as $M_c$ increases from 0.3 to 0.7, due to significant changes in the vortex pairing structures. The shear layer centre slightly shifts to the high-speed side due to the appearance of the velocity deficit. The velocity deficit presence distance (VDPD) becomes longer as compressibility increases. However, in the turbulent region, the cross-stream profiles of the main budget terms significantly shift to the low-speed side because of the asymmetric mass entrainment and shift even further as $M_c$ increases.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks.
Ruelle predicted that the maximal amplification of perturbations in homogeneous isotropic turbulence is exponential $\exp ({\sigma \sqrt {Re} \,t})$ (where $\sigma \sqrt {Re}$ is the maximal Lyapunov exponent). In our earlier works, we predicted that the maximal amplification of perturbations in fully developed turbulence is faster than exponential and is given by $\exp ({\sigma \sqrt {Re} \sqrt {t} +\sigma _1 t})$ where $\sigma \sqrt {Re} \sqrt {t}$ is much larger than $\sigma \sqrt {Re} \, t$ for small $t$. That is, we predicted superfast initial amplification of perturbations. Built upon our earlier numerical verification of our prediction, here, we conduct a large numerical verification with resolution up to $2048^3$ and Reynolds number up to $6210$. Our direct numerical simulation here confirms our analytical prediction. Our numerical simulation also demonstrates that such superfast amplification of perturbations leads to superfast nonlinear saturation. We conclude that such superfast amplification and superfast nonlinear saturation of ever existing perturbations suggest a mechanism for the generation, development and persistence of fully developed turbulence.
Developing alternatives to antibiotics is an urgent need in livestock production. Antimicrobial peptides (AMPs) are regarded as powerful antibiotic substitutes (ASs) because AMPs have broad-spectrum antimicrobial activities and growth-promoting ability. Here, we aimed to comprehensively assess the effects of AMPs on the growth performance, diarrhea rate, intestinal morphology and immunity of healthy or challenged piglets, compared with an antibiotics group or negative control group. We performed a set of meta-analyses of feeding trials from database inception to 27 May 2019. Among the 1379 identified studies, 20 were included in our meta-analyses (56 arms and 4067 piglets). The meta-analyses revealed that (1) compared with the negative control group, AMPs significantly improved the healthy piglets’ average daily gain (ADG), average daily feed intake (ADFI), gain : feed ratio (G/F), levels of immune globulin (Ig) IgM and IgG, and intestinal villus height : crypt depth ratio (V/C) (P < 0.05). Meanwhile, AMPs significantly increased the challenged piglets’ ADG, ADFI, G/F and V/C of the jejunum and ileum, and notably deceased the diarrhea rate (P < 0.05); (2) compared with antibiotics group, the effects of AMPs were slightly weaker than those of antibiotics in the healthy piglets, but AMPs have similar effects to those of antibiotics in challenged piglets. In a higher purity, the optimal dose of AMPs may be approximately 0.01%. Our findings indicate that AMPs can improve piglet growth performance, enhance immunity, benefit intestinal morphology and decrease the diarrheal rate. AMPs could be great ASs especially under infection conditions.
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
To describe the laboratory findings of cases of death with coronavirus disease 2019 (COVID-19) and to establish a scoring system for predicting death, we conducted this single-centre, retrospective, observational study including 336 adult patients (≥18 years old) with severe or critically ill COVID-19 admitted in two wards of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology in Wuhan, who had definite outcomes (death or discharge) between 1 February 2020 and 13 March 2020. Single variable and multivariable logistic regression analyses were performed to identify mortality-related factors. We combined multiple factors to predict mortality, which was validated by receiver operating characteristic curves. As a result, in a total of 336 patients, 34 (10.1%) patients died during hospitalisation. Through multivariable logistic regression, we found that decreased lymphocyte ratio (Lymr, %) (odds ratio, OR 0.574, P < 0.001), elevated blood urea nitrogen (BUN) (OR 1.513, P = 0.009), and raised D-dimer (DD) (OR 1.334, P = 0.002) at admission were closely related to death. The combined prediction model was developed by these factors with a sensitivity of 100.0% and specificity of 97.2%. In conclusion, decreased Lymr, elevated BUN, and raised DD were found to be in association with death outcomes in critically ill patients with COVID-19. A scoring system was developed to predict the clinical outcome of these patients.
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.
Soybean meal is rich in soybean isoflavones, which exhibit antioxidant, anti-inflammatory, antiviral and anticancer functions in humans and animals. This study was conducted to investigate the effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. A total of 72 weaned piglets (7.45 ± 0.13 kg; 36 males and 36 females) were allocated into three treatments and fed corn-soybean meal (C-SBM), corn-soy protein concentrate (C-SPC) or C-SPC supplemented with equal levels of the isoflavones found in the C-SBM diet (C-SPC + ISF) for a 72-day trial. Each treatment had six replicates and four piglets per replicate, half male and half female. On day 42, one male pig from each replicate was selected and euthanized to collect intestinal samples. The results showed that compared to pigs fed the C-SPC diet, pigs fed the C-SBM and C-SPC + ISF diets had higher BW on day 72 (P < 0.05); pigs fed the C-SBM diet had significantly higher average daily gain (ADG) during days 14 to 28 (P < 0.05), with C-SPC + ISF being intermediate; pigs fed the C-SBM diet tended to have higher ADG during days 42 to 72 (P = 0.063), while pigs fed the C-SPC + ISF diet had significantly higher ADG during days 42 to 72 (P < 0.05). Moreover, compared to pigs fed the C-SPC diet, pigs fed the C-SBM diet tended to have greater villus height (P = 0.092), while pigs fed the C-SPC + ISF diet had significantly greater villus height (P < 0.05); pigs fed the C-SBM and C-SPC + ISF diets had significantly increased villus height-to-crypt depth ratio (P < 0.05). Compared with the C-SPC diet, dietary C-SPC + ISF tended to increase plasma superoxide dismutase activity on days 28 (P = 0.085) and 42 (P = 0.075) and reduce plasma malondialdehyde (MDA) content on day 42 (P = 0.089), as well as significantly decreased jejunal mucosa MDA content on day 42 (P < 0.05). However, no significant difference in the expression of tight junction genes among the three groups was found (P > 0.05). In conclusion, our results suggest that a long-term exposure to soybean isoflavones enhances the growth performance, protects the intestinal morphology and improves the antioxidative properties in pigs.
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers.
Porphyromonas gingivalis has been linked to the development and progression of oesophageal squamous cell carcinoma (ESCC), and is considered to be a high-risk factor for ESCC. Currently, the commonly used methods for P. gingivalis detection are culture or DNA extraction-based, which are either time and labour intensive especially for high-throughput applications. We aimed to establish and evaluate a rapid and sensitive direct quantitative polymerase chain reaction (qPCR) protocol for the detection of P. gingivalis without DNA extraction which is suitable for large-scale epidemiological studies. Paired gingival swab samples from 192 subjects undergoing general medical examinations were analysed using two direct and one extraction-based qPCR assays for P. gingivalis. Tris-EDTA buffer-based direct qPCR (TE-direct qPCR), lysis-based direct qPCR (lysis-direct qPCR) and DNA extraction-based qPCR (kit-qPCR) were used, respectively, in 192, 132 and 60 of these samples for quantification of P. gingivalis. The sensitivity and specificity of TE-direct qPCR was 95.24% and 100% compared with lysis-direct qPCR, which was 100% and 97.30% when compared with kit-qPCR; TE-direct qPCR had an almost perfect agreement with lysis-direct qPCR (κ = 0.954) and kit-qPCR (κ = 0.965). Moreover, the assay time used for TE-direct qPCR was 1.5 h. In conclusion, the TE-direct qPCR assay is a simple and efficient method for the quantification of oral P. gingivalis and showed high sensitivity and specificity compared with routine qPCR.
In recent years, men who have sex with men (MSM) constitute a major group of HIV transmission in China. High primary drug-resistance (PDR) rate in MSM also represents a serious challenge for the Chinese antiretroviral therapy (ART) program. To assess the efficiency of ART in controlling HIV/AIDS infection among MSM, we developed a compartmental model for the annually reported HIV/AIDS MSM from 2007 to 2019 in the Zhejiang Province of China. R0 was 2.3946 (95% CI (2.2961–2.4881)). We predict that 90% of diagnosed HIV/AIDS individuals will have received treatment till 2020, while the proportion of the diagnosed remains as low as 40%. Even when the proportion of the diagnosed reaches 90%, R0 is still larger than the level of AIDS epidemic elimination. ART can effectively control the spread of HIV, even in the presence of drug resistance. The 90-90-90 strategy alone may not eliminate the HIV epidemic in Chinese MSM. Behavioural and biologic interventions are the most effective interventions to control the HIV/AIDS epidemic among MSM.
Increasing evidence supports that 5HTTLPR polymorphism of the serotonin transporter gene(5HTTLPR) might associate to bipolar disorder and affective temperaments as measured by TEMPS-A. But the results are discrepant, furthermore, there are no data from Chinese population.
Objectives:
The present study was designed to investigate association between 5HTTLPR and bipolar disorder and affective temperaments of patients with bipolar disorder in the specific Chinese population and add new evidence to the field.
Methods:
There hundred and five patients with bipolar disorder and 272 normal controls were included in the present case-control study⌧Temperament Evaluation of Memphis, Pisa, Paris and San Diego -autoquestionnaire version (TEMPS-A) in Chinese was used to assess affective temperament. Chi-square test, T test, Nonparametric test and ANOVA were employed to explore association between 5HTTLPR polymorphism and bipolar disorder and affective temperament of patients with bipolar disorder.
Results:
5-HTTLPR L/S polymorphism was associated with bipolar disorder in female (genotype χ2 = 6.769⌧P = 0.034⌧allele χ2 = 6.028⌧P = 0.014) and the S allele was associated with anxious temperament (t = 8.248⌧P = 0.005) in patients with bipolar disorder. the LA allele of 5-HTTLPR rs25531 A/G polymorphism was associated with hyperthymic temperament in patients with bipolar disorder (Z = −2.205⌧P = 0.027).
Conclusions:
5-HTTLPR might have an effect on the prevalence of bipolar disorder in female and regulate affective temperaments of patients with bipolar disorder in some degree in Chinese population.
rs10761482 in ANK3 gene showed a significant association with schizophrenia in a genome-wide association study (GWAS). Another marker rs10994336 in ANK3 with the risk of bipolar disorder (BD) which might have more genetic overlap with schizophrenia, had been reported in two meta-analyses of GWAS. In this study, we investigated the association between ANK3 polymorphisms and the susceptibility of schizophrenia in Chinese Han population.
Methods
Population-based (schizophrenia patients = 516 and controls = 400) and family based (trios of early onset schizophrenia= 81) study was performed through genotyping the most promising makers rs10761482, rs10994336, and two missenses rs3808942 and rs3808943 near promoter of ANK3. Particularly, we conducted an association analysis for the combined case-control and family samples.
Results
Our population-based study replicated the association between rs10761482 (P = 0.0268 with C allele) and schizophrenia, and detected a novel association with rs10994336 (P = 4.0 × 10−4 with T allele). Haplotype analysis revealed the higher frequencies of C-T, and T-C (rs10761482–10994336) in the cases than controls (P = 0.0032 and P = 0.0012, respectively). In the family study, the C allele of rs10761482 (P = 0.0940) and T allele of rs10994336 (P = 0.0832) were slightly over-transmitted, and T-C was significantly associated with schizophrenia (P = 0.0304). The results from the combined samples analysis were consistent with independent analysis. rs10761482, rs10994336, C-T, and T-C were significantly associated with schizophrenia (P = 3.3 × 10−6∼3.9 × 10−5), whilst rs3808942 and rs3808943 did not reach normal significance.
Conclusions
Our data strongly support ANK3 gene is a schizophrenia susceptibility gene, and also provide further evidence for the shared susceptibility loci between schizophrenia and BD.