We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A commercial bentonite (primarily smectite) from Fischer Scientific Company (F bentonite) and a natural bentonite from Peru (P bentonite) were used in the preparation of pillared clays with polyoxymetal cations of Al that were subsequently modified with Ce and La. Several Al/metal ratios (5 and 9) were used to investigate the effects on the thermal and hydrothermal stability of these synthetic clays. The structure of these materials was studied by X-ray diffraction. Isotherms were determined by N2 adsorption. Thermal stability was determined using thermogravimetric (TG) measurements and ara-monia-TPD (temperature programmed desorption) was used to obtain acidity data. These materials exhibited basal spacings from 16 to 20 Å, with surface areas from 239 to 347 m2g−1, with microporosity contributing from 50 to 80% of the total surface area. Pillared clays prepared from F bentonite generally showed larger basal spacings and surface areas than those prepared from P bentonite. Pillared clays modified with Ce or La did not show any apparent structural changes relative to the Al-pillared clays. Pillared clays modified with Ce and La had similar acid properties as Al-pillared clays. In contrast, the thermal and hydrothermal stabilities of these materials were greater than Al-pillared clays. However, Ce-pillared clay appears to be more effective than La-pillared clay in delaying the dehydroxylation of pillared clays with increasing temperature. The intercalation of Ce and La into Al-pillared clays improved the thermal stability, which may increase the utility of these materials as catalysts.
Bentonite- and sepiolite-supported copper catalysts have been prepared either by adsorption of Cu(II) from aqueous solutions of copper nitrate at pH ~4.5 or by adsorption of a [Cu(NH3)4]2+ complex from an ammonia solution of CuSO4 at pH ~9.5. The structure and composition of the calcined preparations have been studied by X-ray diffraction, chemical analysis, and energy dispersive X-rays. Textural characteristics have derived from the analysis of the adsorption-desorption isotherms of N2. All catalysts have been tested for the dehydrogenation of methanol to methyl formate. For this reaction, bentonite-based catalysts were found to have very little activity, which indicates that copper located in the inter-lamellar spaces is inaccessible to methanol molecules. On the contrary, copper-sepiolite catalysts showed a very high specific activity even for those catalysts with a very low copper content. The chemical state of copper in the catalysts on-stream has been revealed by X-ray photoelectron spectroscopy and X-ray-induced Auger techniques. In most of the catalysts Cu+ is the dominant copper species.
Ultra-processed plant-based foods, such as plant-based burgers, have gained in popularity. Particularly in the out-of-home (OOH) environment, evidence regarding their nutritional profile and environmental sustainability is still evolving. Plant-based burgers available at selected OOH sites were randomly sampled in Amsterdam, Copenhagen, Lisbon and London. Plant-based burgers (patty, bread and condiment) (n 41) were lab analysed for their energy, macronutrients, amino acids and minerals content per 100 g and serving and were compared with reference values. For the plant-based burgers, the median values per 100 g were 234 kcal, 20·8 g carbohydrates, 3·5 g dietary fibre and 12·0 g fat, including 0·08 g TFS and 2·2 g SFA. Protein content was 8·9 g/100 g, with low protein quality according to amino acid composition. Median Na content was 389 mg/100 g, equivalent to 1 g salt. Compared with references, the median serving provided 31% of energy intake based on a 2000 kcal per day and contributed to carbohydrates (17–28%), dietary fibre (42%), protein (40%), total fat (48%), SFA (26%) and Na (54%). One serving provided 15–23% of the reference values for Ca, K and Mg, while higher contributions were found for Zn, Mn, P and Fe (30–67%). The ultra-processed plant-based burgers provide protein, dietary fibre and essential minerals and contain relatively high levels of energy, Na and total fats. The amino acid composition indicated low protein quality. The multifaceted nutritional profile of plant-based burgers highlights the need for manufacturers to implement improvements to better support healthy dietary habits, including reducing energy, Na and total fats.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Introduction. Some medical centers and surgeons require patients to stop smoking cigarettes prior to elective orthopaedic surgeries in an effort to decrease surgical complications. Given higher rates of smoking among rural individuals, rural patients may be disproportionately impacted by these requirements. We assessed the perceptions and experiences of rural-residing Veterans and clinicians related to this requirement. Methods. We conducted qualitative semistructured one-on-one interviews of 26 rural-residing veterans, 10 VA orthopaedic surgery staff (from two Veterans Integrated Services Networks), 24 PCPs who serve rural veterans (14 VA; 10 non-VA), and 4 VA pharmacists. Using the knowledge, attitudes, and behavior framework, we performed conventional content analysis. Results. We found three primary themes across respondents: (1) knowledge of and the evidence base for the requirement varied widely; (2) strong personal attitudes toward the requirement; and (3) implementation and possible implications of this requirement. All surgery staff reported knowledge of requirements at their institution. VA PCPs reported knowledge of requirements but typically could not recall specifics. Most patients were unaware. The majority of respondents felt this requirement could increase motivation to quit smoking. Some PCPs felt a more thorough explanation of smoking-related complications would result in increased quit attempts. About half of all patients reported belief that the requirement was reasonable regardless of initial awareness. Respondents expressed little concern that the requirement might increase rural-urban disparities. Most PCPs and patients felt that there should be exceptions for allowing surgery, while surgical staff disagreed. Discussion. Most respondents thought elective surgery was a good motivator to quit smoking; but patients, PCPs, and surgical staff differed on whether there should be exceptions to the requirement that patients quit preoperatively. Future efforts to augment perioperative smoking cessation may benefit from improving coordination across services and educating patients more about the benefits of quitting.
To determine the reliability of teleneuropsychological (TNP) compared to in-person assessments (IPA) in people with HIV (PWH) and without HIV (HIV−).
Methods:
Participants included 80 PWH (Mage = 58.7, SDage = 11.0) and 23 HIV− (Mage = 61.9, SDage = 16.7). Participants completed two comprehensive neuropsychological IPA before one TNP during the COVID-19 pandemic (March–December 2020). The neuropsychological tests included: Hopkins Verbal Learning Test-Revised (HVLT-R Total and Delayed Recall), Controlled Oral Word Association Test (COWAT; FAS-English or PMR-Spanish), Animal Fluency, Action (Verb) Fluency, Wechsler Adult Intelligence Scale 3rd Edition (WAIS-III) Symbol Search and Letter Number Sequencing, Stroop Color and Word Test, Paced Auditory Serial Addition Test (Channel 1), and Boston Naming Test. Total raw scores and sub-scores were used in analyses. In the total sample and by HIV status, test-retest reliability and performance-level differences were evaluated between the two consecutive IPA (i.e., IPA1 and IPA2), and mean in-person scores (IPA-M), and TNP.
Results:
There were statistically significant test-retest correlations between IPA1 and IPA2 (r or ρ = .603–.883, ps < .001), and between IPA-M and TNP (r or ρ = .622–.958, ps < .001). In the total sample, significantly lower test-retest scores were found between IPA-M and TNP on the COWAT (PMR), Stroop Color and Word Test, WAIS-III Letter Number Sequencing, and HVLT-R Total Recall (ps < .05). Results were similar in PWH only.
Conclusions:
This study demonstrates reliability of TNP in PWH and HIV−. TNP assessments are a promising way to improve access to traditional neuropsychological services and maintain ongoing clinical research studies during the COVID-19 pandemic.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Manure is a primary source of methane (CH4) emissions into the atmosphere. A large proportion of CH4 from manure is emitted during storage, but this varies with storage methods. In this research, we tested whether covering a manure heap with plastic reduces CH4 emission during a short-term composting process. A static chamber method was used to detect the CH4 emission rate and the change of the physicochemical properties of cattle manure which was stored either uncovered (treatment UNCOVERED) or covered with plastic (treatment COVERED) for 30-day periods during the four seasons? The dry matter content of the COVERED treatment was significantly less than the UNCOVERED treatment (P < 0.01), and the C/N ratio of the COVERED treatment significantly greater than the UNCOVERED treatment (P > 0.05) under high temperature. In the UNCOVERED treatment, average daily methane (CH4) emissions were in the order summer > spring > autumn > winter. CH4 emissions were positively correlated with the temperature (R2 = 0.52, P < 0.01). Compared to the UNCOVERED treatment, the daily average CH4 emission rates from COVERED treatment manure were less in the first 19 days of spring, 13 days of summer, 10 days of autumn and 30 days of winter. In summary, covering the manure pile with plastic reduces the evaporation of water during storage; and in winter, long-term covering with plastic film reduces the CH4 emissions during the storage of manure.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Through diversity of composition, sequence, and interfacial structure, hybrid materials greatly expand the palette of materials available to access novel functionality. The NSF Division of Materials Research recently supported a workshop (October 17–18, 2019) aiming to (1) identify fundamental questions and potential solutions common to multiple disciplines within the hybrid materials community; (2) initiate interfield collaborations between hybrid materials researchers; and (3) raise awareness in the wider community about experimental toolsets, simulation capabilities, and shared facilities that can accelerate this research. This article reports on the outcomes of the workshop as a basis for cross-community discussion. The interdisciplinary challenges and opportunities are presented, and followed with a discussion of current areas of progress in subdisciplines including hybrid synthesis, functional surfaces, and functional interfaces.
Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.
Phytase has long been used to decrease the inorganic phosphorus (Pi) input in poultry diet. The current study was conducted to investigate the effects of Pi supplementation on laying performance, egg quality and phosphate–calcium metabolism in Hy-Line Brown laying hens fed phytase. Layers (n = 504, 29 weeks old) were randomly assigned to seven treatments with six replicates of 12 birds. The corn–soybean meal-based diet contained 0.12% non-phytate phosphorus (nPP), 3.8% calcium, 2415 IU/kg vitamin D3 and 2000 FTU/kg phytase. Inorganic phosphorus (in the form of mono-dicalcium phosphate) was added into the basal diet to construct seven experimental diets; the final dietary nPP levels were 0.12%, 0.17%, 0.22%, 0.27%, 0.32%, 0.37% and 0.42%. The feeding trial lasted 12 weeks (hens from 29 to 40 weeks of age). Laying performance (housed laying rate, egg weight, egg mass, daily feed intake and feed conversion ratio) was weekly calculated. Egg quality (egg shape index, shell strength, shell thickness, albumen height, yolk colour and Haugh units), serum parameters (calcium, phosphorus, parathyroid hormone, calcitonin and 1,25-dihydroxyvitamin D), tibia quality (breaking strength, and calcium, phosphorus and ash contents), intestinal gene expression (type IIb sodium-dependent phosphate cotransporter, NaPi-IIb) and phosphorus excretion were determined at the end of the trial. No differences were observed on laying performance, egg quality, serum parameters and tibia quality. Hens fed 0.17% nPP had increased (P < 0.01) duodenum NaPi-IIb expression compared to all other treatments. Phosphorus excretion linearly increased with an increase in dietary nPP (phosphorus excretion = 1.7916 × nPP + 0.2157; R2 = 0.9609, P = 0.001). In conclusion, corn–soybean meal-based diets containing 0.12% nPP, 3.8% calcium, 2415 IU/kg vitamin D3 and 2000 FTU/kg phytase would meet the requirements for egg production in Hy-Line Brown laying hens (29 to 40 weeks of age).
Our research group demonstrated that vitamin A restriction affected meat quality of Angus cross and Simmental steers. Therefore, the aim of this study is to highlight the genotype variations in response to dietary vitamin A levels. Commercial Angus and Simmental steers (n = 32 per breed; initial BW = 337.2 ± 5.9 kg; ~8 months of age) were fed a low-vitamin A (LVA) (1017 IU/kg DM) backgrounding diet for 95 days to reduce hepatic vitamin A stores. During finishing, steers were randomly assigned to treatments in a 2 × 2 factorial arrangement of genotype × dietary vitamin A concentration. The LVA treatment was a finishing diet with no supplemental vitamin A (723 IU vitamin A/kg DM); the control (CON) was the LVA diet plus supplementation with 2200 IU vitamin A/kg DM. Blood samples were collected at three time points throughout the study to analyze serum retinol concentration. At the completion of finishing, steers were slaughtered at a commercial abattoir. Meat characteristics assessed were intramuscular fat concentration, color, Warner-Bratzler shear force, cook loss and pH. Camera image analysis was used for determination of marbling, 12th rib back fat and longissimus muscle area (LMA). The LVA steers had lower (P < 0.001) serum retinol concentration than CON steers. The LVA treatment resulted in greater (P = 0.03) average daily gain than the CON treatment, 1.52 and 1.44 ± 0.03 kg/day, respectively; however, there was no effect of treatment on final BW, DM intake or feed efficiency. Cooking loss and yield grade were greater and LMA was smaller in LVA steers (P < 0.05). There was an interaction between breed and treatment for marbling score (P = 0.01) and percentage of carcasses grading United States Department of Agriculture (USDA) Prime (P = 0.02). For Angus steers, LVA treatment resulted in a 16% greater marbling score than CON (683 and 570 ± 40, respectively) and 27% of LVA Angus steers graded USDA Prime compared with 0% for CON. Conversely, there was no difference in marbling score or USDA Quality Grades between LVA and CON for Simmental steers. In conclusion, feeding a LVA diet during finishing increased marbling in Angus but not in Simmental steers. Reducing the vitamin A level of finishing diets fed to cattle with a high propensity to marble, such as Angus, has the potential to increase economically important traits such as marbling and quality grade without negatively impacting gain : feed or yield grade.
Beef cattle are often fed high-concentrate diet (HCD) to achieve high growth rate. However, HCD feeding is strongly associated with metabolic disorders. Mild acid treatment of grains in HCD with 1% hydrochloric acid (HA) followed by neutralization with sodium bicarbonate (SB) might modify rumen fermentation patterns and microbiota, thereby decreasing the negative effects of HCD. This study was thus aimed to investigate the effects of treatment of corn with 1% HA and subsequent neutralization with SB on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed HCD. Eighteen beef cattle were randomly allocated to three groups and each group was fed different diets: low-concentrate diet (LCD) (concentrate : forage = 40 : 60), HCD (concentrate : forage = 60 : 40) or HCD based on treated corn (HCDT) with the same concentrate to forage ratio as the HCD. The corn in the HCDT was steeped in 1% HA (wt/wt) for 48 h and neutralized with SB after HA treatment. The animal trial lasted for 42 days with an adaptation period of 7 days. At the end of the trial, rumen fluid samples were collected for measuring ruminal pH values, short-chain fatty acids, endotoxin (or lipopolysaccharide, LPS) and bacterial microbiota. Plasma samples were collected at the end of the trial to determine the concentrations of plasma LPS, proinflammatory cytokines and acute phase proteins (APPs). The results showed that compared with the LCD, feeding the HCD had better growth performance due to a shift in the ruminal fermentation pattern from acetate towards propionate, butyrate and valerate. However, the HCD decreased ruminal pH and increased ruminal LPS release and the concentrations of plasma proinflammatory cytokines and APPs. Furthermore, feeding the HCD reduced bacterial richness and diversity in the rumen. Treatment of corn increased resistant starch (RS) content. Compared with the HCD, feeding the HCDT reduced ruminal LPS and improved ruminal bacterial microbiota, resulting in decreased inflammation and improved growth performance. In conclusion, although the HCD had better growth performance than the LCD, feeding the HCD promoted the pH reduction and the LPS release in the rumen, disturbed the ruminal bacterial stability and increased inflammatory response. Treatment of corn with HA in combination with subsequent SB neutralization increased the RS content and helped counter the negative effects of feeding HCD to beef steers.
Optically luminous early type galaxies host X-ray luminous, hot atmospheres. These hot atmospheres, which we refer to as coronae, undergo the same cooling and feedback processes as are commonly found in their more massive cousins, the gas rich atmospheres of galaxy groups and galaxy clusters. In particular, the hot coronae around galaxies radiatively cool and show cavities in X-ray images that are filled with relativistic plasma originating from jets powered by supermassive black holes (SMBH) at the galaxy centers. We discuss the SMBH feedback using an X-ray survey of early type galaxies carried out using Chandra X-ray Observatory observations. Early type galaxies with coronae very commonly have weak X-ray active nuclei and have associated radio sources. Based on the enthalpy of observed cavities in the coronae, there is sufficient energy to “balance” the observed radiative cooling. There are a very few remarkable examples of optically faint galaxies that are 1) unusually X-ray luminous, 2) have large dark matter halo masses, and 3) have large SMBHs (e.g., NGC4342 and NGC4291). These properties suggest that, in some galaxies, star formation may have been truncated at early times, breaking the simple scaling relations.
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.
The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)–pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D–pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1·1 ml in EA (95 % CI 0·9, 1·3; P<0·0001) and 1·8 ml (95 % CI 1·1, 2·5; P<0·0001) in AA (Prace difference=0·06), and forced vital capacity (FVC) was higher by 1·3 ml in EA (95 % CI 1·0, 1·6; P<0·0001) and 1·5 ml (95 % CI 0·8, 2·3; P=0·0001) in AA (Prace difference=0·56). Among EA, the 25(OH)D–FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1·7 ml (95 % CI 1·1, 2·3) for current smokers and 1·7 ml (95 % CI 1·2, 2·1) for former smokers, compared with 0·8 ml (95 % CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.