We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Centro de Laseres Pulsados in Salamanca, Spain has recently started operation phase and the first user access period on the 6 J 30 fs 200 TW system (VEGA 2) already started at the beginning of 2018. In this paper we report on two commissioning experiments recently performed on the VEGA 2 system in preparation for the user campaign. VEGA 2 system has been tested in different configurations depending on the focusing optics and targets used. One configuration (long focal length
$F=130$
cm) is for underdense laser–matter interaction where VEGA 2 is focused onto a low density gas-jet generating electron beams (via laser wake field acceleration mechanism) with maximum energy up to 500 MeV and an X-ray betatron source with a 10 keV critical energy. A second configuration (short focal length
$F=40$
cm) is for overdense laser–matter interaction where VEGA 2 is focused onto a
$5~\unicode[STIX]{x03BC}\text{m}$
thick Al target generating a proton beam with a maximum energy of 10 MeV and temperature of 2.5 MeV. In this paper we present preliminary experimental results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.