We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An experiment was conducted to determine the effects of supplementing different amounts of daidzein in a diet on the growth performance, blood biochemical parameters and meat quality of finishing beef cattle. Thirty finishing Xianan steers were distributed in three groups equilibrated by weight and fed three different dietary treatments (concentrate ratio = 80%): (1) control; (2) 500 mg/kg daidzein and (3) 1000 mg/kg daidzein, respectively. Steers were slaughtered after an 80-day feeding trial. Results showed that daidzein supplementation had no effect on the final body weight, average daily gain and feed conversion rate of steers. Steers fed with 1000 mg/kg daidzein had greater dry matter intake than those fed with control diets. Compared with the control group, the 1000 mg/kg daidzein group had a higher fat thickness, lower shear force and lightness. The pH, drip loss, cooking loss, redness (a*), yellowness (b*), moisture, ash, crude protein and intramuscular fat of the Longissimus dorsi muscle were unaffected by daidzein supplementation. Compared with the control group, the 1000 mg/kg daidzein group significantly increased the serum concentrations of insulin, free fatty acid and Glutamic-pyruvic transaminase. The 500 mg/kg daidzein group significantly increased the serum concentration of tetraiodothyronine compared with the control group. Supplemental daidzein did not affect the blood antioxidant ability and blood immune parameters in serum. In conclusion, daidzein supplementation above 500 mg/day modifies feed intake and metabolic and hormonal profile, with positive and negative effects on meat quality.
An electromechanical coupling model is established for the space-tethered combination (STC) under microgravity environment after target capture by the tethered robot system (TRS). A linearized dynamic model of the STC is put forward with its controllability and observability as a control system analyzed. A double closed-loop tension control strategy is proposed to mitigate the impact and suing longitudinal vibration caused by the velocity difference between the platform and target. Experiment setup is built on a ground-based flotation platform to investigate the impact of the STC. Results of simulation and experimental validation show that the proposed tension control strategy is responsive and rapid in tension tracking and effectively prevent impact.
While studies suggest that nutritional supplementation may reduce aggressive behavior in children, few have examined their effects on specific forms of aggression. This study tests the primary hypothesis that omega-3 (ω-3), both alone and in conjunction with social skills training, will have particular post-treatment efficacy for reducing childhood reactive aggression relative to baseline.
Methods
In this randomized, double-blind, stratified, placebo-controlled, factorial trial, a clinical sample of 282 children with externalizing behavior aged 7–16 years was randomized into ω-3 only, social skills only, ω-3 + social skills, and placebo control groups. Treatment duration was 6 months. The primary outcome measure was reactive aggression collected at 0, 3, 6, 9, and 12 months, with antisocial behavior as a secondary outcome.
Results
Children in the ω-3-only group showed a short-term reduction (at 3 and 6 months) in self-report reactive aggression, and also a short-term reduction in overall antisocial behavior. Sensitivity analyses and a robustness check replicated significant interaction effects. Effect sizes (d) were small, ranging from 0.17 to 0.31.
Conclusions
Findings provide some initial support for the efficacy of ω-3 in reducing reactive aggression over and above standard care (medication and parent training), but yield only preliminary and limited support for the efficacy of ω-3 in reducing overall externalizing behavior in children. Future studies could test further whether ω-3 shows promise in reducing more reactive, impulsive forms of aggression.
It is difficult to control Holotrichia parallela Motschulsky with chemical insecticides due to the larvae's soil-living habit, thus the pest has caused great economic losses in agriculture. In addition, uridine diphosphate-glycosyltransferases (UGTs) catalyze the glycosylation process of a variety of small lipophilic molecules with sugars to produce water-soluble glycosides, and play multiple roles in detoxification, endobiotic modulation, and sequestration in an insect. Some UGTs were found specifically expressed in antennae of Drosophila melanogaster and Spodoptera littoralis, and glucurono-conjugated odorants could not elicit any olfactory signals, suggesting that the UGTs may play roles in odorant inactivation by biotransformation. In the current study, we performed a genome-wide analysis of the candidate UGT family in the dark black chafer, H. parallela. Based on a UGT gene signature and the similarity of these genes to UGT homologs from other organisms, 20 putative H. parallela UGT genes were identified. Bioinformatics analysis was used to predict sequence and structural features of H. parallela UGT proteins, and revealed important domains and residues involved in sugar donor binding and catalysis by comparison with human UGT2B7. Phylogenetic analysis of these 20 UGT protein sequences revealed eight major groups, including both order-specific and conserved groups, which are common to more than one order. Of these 20 UGT genes, HparUGT1265-1, HparUGT3119, and HparUGT8312 were highly (>100-fold change) expressed in antennae, suggesting a possible role in olfactory tissue, and most likely in odorant inactivation and olfactory processing. The remaining UGT genes were expressed in all tissues (head, thorax, abdomen, leg, and wing), indicating that these UGTs likely have different biological functions. This study provides the fundamental basis for determining the function of UGTs in a highly specialized olfactory organ, the H. parallela antenna.
High-speed synchronized stereo particle-imaging velocimetry and OH planar laser-induced fluorescence (PIV/OH-PLIF) measurements are performed on multiple
$R{-}\unicode[STIX]{x1D703}$
planes downstream of a high-Reynolds-number swirling jet. Dynamic-mode decomposition (DMD) – a frequency-resolved data-reduction technique – is used to identify and characterize recurrent flow structures. Illustrative results are presented in a swirling flow field for two cases – the nominal flow dynamics and where self-excited combustion driven oscillations provide strong axisymmetric narrowband forcing of the flow. The robust constituent of the nominal reacting swirl flow corresponds to a helical shear-layer disturbance at a Strouhal number (
$St$
) of
${\sim}0.30$
,
$St=fD/U_{0}$
, where
$f$
,
$D$
and
$U_{0}$
denote the precessing vortex core (PVC) frequency (
${\sim}800~\text{Hz}$
), the swirler exit diameter (19 mm) and the bulk velocity at the swirler exit (
$50~\text{m}~\text{s}^{-1}$
) respectively. Planar projections of the PVC reveal a pair of oscillating skew-symmetric regions of velocity, vorticity and OH-PLIF intensity that rotate in the same direction as the mean tangential flow. During combustion instabilities, the large-amplitude acoustics-induced axisymmetric forcing of the flow results in a fundamentally different flow response dominated by a nearly axisymmetric disturbance and almost complete suppression of the large-scale helical shear-layer disturbances dominating the nominal flow. In addition, reverse axial flows around the centreline are significantly reduced. Time traces of the robust constituent show reverse axial flows around the centreline and negative axial vorticity along the inner swirling shear layer when the planar velocity is in the same direction as the mean tangential flow. For both stable and unstable combustion, recurrent flow structures decay rapidly downstream of the air swirler, as revealed by the decreasing amplitude of the velocity, axial vorticity and OH-PLIF intensity.
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. Details for each of these approaches are described.
During 1985-1987 Celestial Mechanics has been intensively developed in all its branches embracing physical bases, mathematical aspects, computational techniques and astronomical objectives. Commission 7 has organized three IAU conferences: Symposium No. 114 “Relativity in Celestial Mechanics and Astrometry” (Leningrad, May 1985), Colloquium No. 96 “The Few Body Problem” (Turku, June 1987) and Topical Session “Resonances in the Solar System” of the X-th European Regional Astronomy Meeting (Prague, August 1987). Members of the commission have broadly participated in the NATO Advanced Study Institute “Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems” (Cortina d’Ampezzo, August 1987) and some other international and regional conferences. Prospects of the actual celestial mechanics investigations have been discussed at a session of Commission 7 at the XIX-th IAU General Assembly (New Delhi, November 1985). Three papers dealing with the unsolved problems of celestial mechanics were primarily addressed to the rising generation of celestial mechanicians (V. A. Brumberg and J. Kovalevsky, CM. 39, 133, 1986; P.K. Seidelmann, CM. 39, 141, 1986).
Among dialysis facilities participating in a bloodstream infection (BSI) prevention collaborative, access-related BSI incidence rate improvements observed immediately following implementation of a bundle of BSI prevention interventions were sustained for up to 4 years. Overall, BSI incidence remained unchanged from baseline in the current analysis.
We present rational computational design of phenothiazine dyes for dye-sensitized solar cells containing different five-membered rings (thiophene, furan, and selenophene) by a combined strategy of modified conjugation order and functionalization leading to the quinoidization of the ring. We predict that it is possible to lower the excitation energy by 20% vs. the parent dye by the combination of: change in the conjugation order of the methine unit, its functionalization by the CN group, and replacement of the thiophene ring by furan.
The effects of ion motion on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration are investigated by analytical modeling and particle-in-cell simulations. Studies show that the rear part of the transmitted pulse modulated by ion motion is sharper compared with the case of the electron shutter only. In this study, the ions further modulate the short-cycle pulses transmitted. A 3.9 fs laser pulse with an intensity of
$1.33\times 10^{21}\ {\rm W}\ {\rm cm}^{-2}$
is generated by properly controlling the motions of the electron and ion in the simulations. The short-cycle laser pulse source proposed can be applied in the generation of single attosecond pulses and electron acceleration in a small bubble regime.
Chromosome 22q11.2 deletion syndrome (22q11DS) is a common genetic disorder with high rates of psychosis and other psychopathologies, but few studies discuss treatment. Our aim was to characterize the prevalence and treatment of major psychiatric illnesses in a well-characterized sample of individuals with 22q11DS.
Method
This was a cross-sectional study of 112 individuals aged 8 to 45 years with a confirmed diagnosis of 22q11DS. Each participant was administered a modified Schedule for Affective Disorders and Schizophrenia for School-Age Children (K-SADS) and the Structured Interview for Prodromal Syndromes (SIPS). Phenotypes assessed were threshold and subthreshold psychosis, depression, mania, generalized and separation anxiety, obsessions/compulsions, inattention/hyperactivity and substance use. Histories of mental health care and current psychotropic treatment were obtained.
Results
Psychopathology was common, with 79% of individuals meeting diagnostic criteria for a disorder at the time of assessment. Diagnoses of psychosis were made in 11% of cases, attenuated positive symptom syndrome (APS) in 21%, and 47% experienced significant subthreshold symptoms. Peak occurrence of psychosis risk was during adolescence (62% of those aged 12–17 years). Criteria for a mood disorder were met by 14%, for anxiety disorder 34% and for attention deficit hyperactivity disorder (ADHD) 31%. Mental health care had been received by 63% of individuals in their lifetime, but only 40% continued therapy and 39% used psychotropics. Antipsychotics were used by 42% of participants with psychosis and none of the participants with APS. Half of those at risk for psychosis were receiving no mental health care.
Conclusions
Psychopathology is common in 22q11DS but is not adequately treated or clinically followed. Particular attention should be paid to subthreshold psychotic symptoms, especially in adolescents.
We measured the UV-optical-near-IR spectral energy distributions (SEDs) of redshift z ~ 0.3-1.5 early-type galaxies (ETGs) with the Hubble Space Telescope (HST) Wide Field Camera 3 (Rutkowski et al.2012). We searched for young stellar populations and morphological signatures of the mechanisms driving recent star formation (RSF) in these ETGs in order to provide observational constraints on models of galaxy evolution.
Synchrotron X-ray topography (SXRT) of various geometries has been successfully utilized to image c+a dislocations in 4H-SiC crystals. Although molten potassium hydroxide(KOH) can be used to reveal the location of such dislocations, it is not possible to determine their senses or their Burgers vector magnitude. A simple, non-destructive method has been proposed to determine the Burgers vector of these c+a dislocations called the ray tracing simulation, which has been successfully implemented previously in revealing the dislocation sense and magnitude of micropipes, closed-core threading screw dislocations (TSDs) and threading edge dislocations (TEDs) in 4H-SiC. In this paper, grazing incidence topography is performed using the monochromatic beam for the horizontally cut wafers to record pyramidal reflections of 11-28 type. Ray tracing simulation has been successfully implemented to correlate the simulated images with experimental images which are discussed in the paper.
Peroxisome proliferator activated receptor gamma is a ligand-dependent transcription factor with an important role in insulin resistance and obesity. We investigated the associations between the Pro12Ala polymorphism of this receptor, obstructive sleep apnoea hypopnoea syndrome and hyperlipidaemia risk factors, in a Chinese cohort.
Subjects and methods:
We recruited 420 obstructive sleep apnoea hypopnoea syndrome patients and 190 healthy controls. Genetic analysis was conducted by restriction fragment length polymorphism. The hyperlipidaemia risk in both the study and control groups was analysed.
Results:
Comparison of genotype and allele frequencies revealed no significant differences between patients and controls (p > 0.05). In patients, there was no correlation between genotype and clinical parameters (p > 0.05), apart from a significant association between the Ala12 allele and hyperlipidaemia (odds ratio = 2.181; p = 0.017; 95 per cent confidence interval = 1.133–4.198).
Conclusion:
In this Chinese cohort, the Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma was not associated with obstructive sleep apnoea hypopnoea syndrome, but was associated with increased hyperlipidaemia risk.
Elimination of degenerate epitaxy in the growth of icosahedral boron arsenide (B12As2, abbreviated as IBA) was achieved on m-plane 15R-SiC substrates and 4H-SiC substrates intentionally misoriented by 7 degrees from (0001) towards [1-100]. Synchrotron white beam x-ray topography (SWBXT) revealed that only single orientation IBA was present in the epitaxial layers demonstrating the absence of twin variants which dominantly constitute the effects of degenerate epitaxy. Additionally, low asterism in the IBA diffraction spots compared to those grown on other SiC substrates indicates a superior film quality. Cross-sectional high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) both confirmed the absence of twins in the IBA films and their high quality. The ease of nucleation on the ordered step structures present on these unique substrates overrides symmetry considerations that drive degenerate epitaxy and dominates the nucleation process of the IBA.
We have analyzed photoluminescence (PL) dynamics of GaN/AlGaN and AlInGaN/AlInGaN multiple quantum wells (MQWs) with different well and barrier widths. The quantum structures were grown by conventional metalorganic chemical vapor deposition and novel pulsed atomic layer epitaxy. In both types of MQWs a blueshift followed by a redshift of the PL peak position were observed with increasing excitation power, which we attributed to the screening of built-in electric fields and band gap renormalization, respectively. In bulk AlInGaN material or in MQWs with thin well widths the blueshift was not observed. This means that the incorporation of In into AlInGaN material in the amount required to fabricate smooth layers with strong emission at 330-350 nm does not create significant concentration of band-tail states. We have also evaluated the internal field in the MQW structures by comparing the experimental PL data to the simulations based on triangular quantum well model resulting from the polarization fields.
We report the results of tensile tests of thin films of Al-0.5 % Cu deposited on bare silicon. This material was subjected to the complete CMOS fabrication process, including a high-temperature heat treatment. Contact metal makes the electrical connection between the metal wiring and the silicon transistors in a chip. Room-temperature values of yield strength, ultimate tensile strength, and elongation were all lower than the corresponding values found previously for pure electron-beam-evaporated aluminum films. The strengths and elongation decreased slightly as the specimen temperature was raised from 25 to 150°C. The slopes of the stress-strain curves from unloading-reloading runs were lower than the accepted Young's modulus of bulk polycrystalline aluminum. The results are interpreted with the help of scanning and transmission electron microscopy.