We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A deeper understanding of creativity and design is essential for the development of tools to improve designers’ creative processes and drive future innovation. The objective of this research is to evaluate the effect of physical activity versus movement in a virtual environment on the creative output of industrial design students. This study contributes a novel assessment of whether the use of virtual reality can produce the same creative output within designers as physical activity has been shown to produce in prior studies. Eighteen industrial design students at the Georgia Institute of Technology completed nine design tasks across three conditions in a within-subjects experimental design. In each condition, participants independently experienced one of three interventions. Solutions were scored for novelty and feasibility, and self-reported mood data was correlated with performance. No significant differences were found in novelty or feasibility of solutions across the conditions. However, there are statistically significant correlations between mood, interventions, and peak performance to be discussed. The results show that participants who experienced movement in virtual reality prior to problem solving performed at an equal or higher level than physical walking for all design tasks and all designer moods. This serves as motivation for continuing to study how VR can provide an impact on a designer's creative output. Hypothesized creative performance with each mode is discussed using trends from four categories of mood, based on the combined mood characteristics of pleasantness (positive/negative) and activation (active/passive).
Longan is an economically important sub-tropical fruit tree native to southern China and southeast Asia. Its production has been affected significantly by climate change, but the underlying reasons remain unclear. Herein, the potential growing areas of longan were simulated by the Maxent model under current and future conditions. The results showed excellent prediction performance, with an area under curve of >0.9 for model training and validation. The key environmental variables identified were mean temperature of the coldest quarter, minimum temperature of the coldest month, annual mean temperature and mean temperature of the driest quarter. The optimum suitable areas of longan were found to be concentrated mainly in south-western, southern and eastern China, with a slight increase in optimum suitable areas under two different emission scenarios of three global climatic models. However, its future potential growing areas were predicted to differ among provinces or cities. Suitable growing areas in Sichuan, Jiangxi, Guangxi and Chongqing will first increase and then remain approximately unchanged between the 2050s and 2070s; those in Yunnan, Guangdong and Hainan will remain approximately unchanged from the present to the 2070s; those in Fujian and Guizhou will fluctuate slightly from the present to the 2050s and then increase to the 2070s; those in Taiwan will first decrease and then increase. In summary, the major future production areas of longan will be Guangdong, Hainan and Guangxi provinces, followed by Chongqing, Yunnan, Fujian and Taiwan. Thus, this study serves as a useful guide for the management of longan.
Developing alternatives to antibiotics is an urgent need in livestock production. Antimicrobial peptides (AMPs) are regarded as powerful antibiotic substitutes (ASs) because AMPs have broad-spectrum antimicrobial activities and growth-promoting ability. Here, we aimed to comprehensively assess the effects of AMPs on the growth performance, diarrhea rate, intestinal morphology and immunity of healthy or challenged piglets, compared with an antibiotics group or negative control group. We performed a set of meta-analyses of feeding trials from database inception to 27 May 2019. Among the 1379 identified studies, 20 were included in our meta-analyses (56 arms and 4067 piglets). The meta-analyses revealed that (1) compared with the negative control group, AMPs significantly improved the healthy piglets’ average daily gain (ADG), average daily feed intake (ADFI), gain : feed ratio (G/F), levels of immune globulin (Ig) IgM and IgG, and intestinal villus height : crypt depth ratio (V/C) (P < 0.05). Meanwhile, AMPs significantly increased the challenged piglets’ ADG, ADFI, G/F and V/C of the jejunum and ileum, and notably deceased the diarrhea rate (P < 0.05); (2) compared with antibiotics group, the effects of AMPs were slightly weaker than those of antibiotics in the healthy piglets, but AMPs have similar effects to those of antibiotics in challenged piglets. In a higher purity, the optimal dose of AMPs may be approximately 0.01%. Our findings indicate that AMPs can improve piglet growth performance, enhance immunity, benefit intestinal morphology and decrease the diarrheal rate. AMPs could be great ASs especially under infection conditions.
This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
In recent years, men who have sex with men (MSM) constitute a major group of HIV transmission in China. High primary drug-resistance (PDR) rate in MSM also represents a serious challenge for the Chinese antiretroviral therapy (ART) program. To assess the efficiency of ART in controlling HIV/AIDS infection among MSM, we developed a compartmental model for the annually reported HIV/AIDS MSM from 2007 to 2019 in the Zhejiang Province of China. R0 was 2.3946 (95% CI (2.2961–2.4881)). We predict that 90% of diagnosed HIV/AIDS individuals will have received treatment till 2020, while the proportion of the diagnosed remains as low as 40%. Even when the proportion of the diagnosed reaches 90%, R0 is still larger than the level of AIDS epidemic elimination. ART can effectively control the spread of HIV, even in the presence of drug resistance. The 90-90-90 strategy alone may not eliminate the HIV epidemic in Chinese MSM. Behavioural and biologic interventions are the most effective interventions to control the HIV/AIDS epidemic among MSM.
Recent studies have identified DAAO as a probable susceptibility gene for schizophrenia and bipolar disorder. However, little is known about how this gene may affect brain function to increase vulnerability to these disorders.
Objective
The present investigation examined the impact of DAAO genotype on brain function in patients with schizophrenia, patients with bipolar I disorder and healthy volunteers.
Aim
We tested the hypotheses that the high-risk variant of DAAO would be associated with altered prefrontal function and functional connectivity in schizophrenic and bipolar patients.
Methods
We used functional magnetic resonance imaging to measure brain responses during a verbal fluency task in a total of 121 subjects comprising 40 patients with schizophrenia, 33 patients with bipolar I disorder and 48 healthy volunteers. We then used statistical parametric mapping (SPM) and psycho-physiological interaction (PPI) analyses to estimate the main effects of diagnostic group, the main effect of genotype and their interaction on brain activation and functional connectivity.
Results
In schizophrenic patients relative to bipolar patients and controls, the high-risk variant of DAAO was associated with lower deactivation in the left precuneus and greater activation in the right calcarine and posterior cingulate gyrus during task performance. In addiction, these areas expressed altered functional connectivity with the rest of the brain in schizophrenic patients relative to bipolar patients and controls.
Conclusions
Our results suggest that genetic variation in DAAO has a significant impact on brain function and provide preliminary evidence for a disease-specific pattern of gene action in specific brain regions.
The present functional magnetic resonance imaging (fMRI) study investigated neural changes in relation to mood biased processing in depression, before and after cognitive behavioral therapy (CBT) using an emotional Stroop task.
Methods:
Sixteen unmedicated patients (mean age 40 years), fulfilling DSM-IV diagnosis for unipolar major depression underwent fMRI, prior to and after 16 once-weekly sessions of CBT. Sixteen matched healthy volunteers were scanned at similar time intervals. In an emotional Stroop task negative and neutral words were presented in various colors and volunteers had to name the color of words. Latencies were recorded to determine behavioral emotional interference effects. MRI images were acquired using clustered image acquisition. Whole-brain and region of interest analysis examined the neural basis of interference and mood biased processing.
Results:
At baseline patients displayed increased latencies during color naming negative words, in comparison to neutral words and in relation to healthy volunteers. After treatment, latencies did not significantly differ between groups. With regard to neural activity, depressed patients showed increased activation at baseline in amygdala, dorsolateral prefrontal cortex (DLPFC), and ventrolateral prefrontal cortex (VLPFC), which normalized after CBT. Additionally, hyperactivation in the rostral anterior cingulate at baseline was positively correlated with symptom reduction after CBT.
Conclusions:
Evidence was found for an emotional interference effect during acute states of depression which improved following CBT. The neural basis is associated with increased activity in the amygdala, DLPFC and VLPFC which normalized after treatment. CBT seems to affect behavioral biases and neural circuits involved in processing negative information.
Chlamydia trachomatis (CT) infection has been a major public health threat globally. Monitoring and prediction of CT epidemic status and trends are important for programme planning, allocating resources and assessing impact; however, such activities are limited in China. In this study, we aimed to apply a seasonal autoregressive integrated moving average (SARIMA) model to predict the incidence of CT infection in Shenzhen city, China. The monthly incidence of CT between January 2008 and June 2019 in Shenzhen was used to fit and validate the SARIMA model. A seasonal fluctuation and a slightly increasing pattern of a long-term trend were revealed in the time series of CT incidence. The monthly CT incidence ranged from 4.80/100 000 to 21.56/100 000. The mean absolute percentage error value of the optimal model was 8.08%. The SARIMA model could be applied to effectively predict the short-term CT incidence in Shenzhen and provide support for the development of interventions for disease control and prevention.
White-light continuum can be induced by the interaction of intense femtosecond laser pulses with condensed materials. By using two orthogonal polarizers, a self-induced birefringence of continuum is observed when focusing femtosecond laser pulses into bulk fused silica. That is, the generated white-light continuum is synchronously modulated anisotropically while propagating in fused silica. Time-resolved detection confirms that self-induced birefringence of continuum shows a growth and saturation feature with time evolution. By adjusting laser energy, the transmitted intensity of continuum modulated by self-induced birefringence also varies correspondingly. Morphology analysis with time evolution indicates that it is the focused femtosecond laser pulses that induce anisotropic microstructures in bulk fused silica, and the anisotropic structures at the same time modulate the generated continuum.
Proximal environments could facilitate smoking cessation among low-income smokers by making cessation appealing to strive for and tenable.
Aims
We sought to examine how home smoking rules and proximal environmental factors such as other household members' and peers' smoking behaviors and attitudes related to low-income smokers' past quit attempts, readiness, and self-efficacy to quit.
Methods
This analysis used data from Offering Proactive Treatment Intervention (OPT-IN) (randomized control trial of proactive tobacco cessation outreach) baseline survey, which was completed by 2,406 participants in 2011/12. We tested the associations between predictors (home smoking rules and proximal environmental factors) and outcomes (past-year quit attempts, readiness to quit, and quitting self-efficacy).
Results
Smokers who lived in homes with more restrictive household smoking rules, and/or reported having ‘important others’ who would be supportive of their quitting, were more likely to report having made a quit attempt in the past year, had greater readiness to quit, and greater self-efficacy related to quitting.
Conclusions
Adjustments to proximal environments, including strengthening household smoking rules, might encourage cessation even if other household members are smokers.
Potential planting area for tuber mustard was simulated using the Maxent model under current and future conditions based on 591 coordinates and 22 environmental layers. Model accuracy was excellent, with area under the receiving operator curve values of 0.967 and 0.958 for model training and testing, respectively. Dominant factors were mean diurnal range, mean temperature of the coldest quarter, annual mean temperature and minimum temperature of the coldest month, with thresholds of 6.5–7.5, 5.5–9, 16–19 and 2.0–6.5 °C, respectively. Under current conditions, suitable habitat areas (2.16% of total land in China) were concentrated mainly in Central, Southwest and East China, which can be defined as three occurrence and diffusion centres. In the 2050s and 2070s, suitable habitat areas are predicted to change to 3.72 and 3.92%, and 3.60 and 3.73% under scenarios RCP4.5 and RCP6.0, respectively, indicating that suitable habitat areas will increase slightly. However, future distribution of tuber mustard was predicted to differ among provinces or cities, i.e. predicted suitable habitat areas in Sichuan Province increased up to the 2050s but remained relatively unchanged between the 2050s and 2070s; in Chongqing city they first increased and then decreased; in Hunan, Anhui, Jiangsu, Zhejiang and Fujian Provinces they increased continuously; and in Guizhou, Hubei, Jiangxi Provinces and Shanghai city they first decreased, and then increased. The results from the current study provide useful information for management decisions of tuber mustard.
Childhood maltreatment (CM) plays an important role in the development of major depressive disorder (MDD). The aim of this study was to examine whether CM severity and type are associated with MDD-related brain alterations, and how they interact with sex and age.
Methods
Within the ENIGMA-MDD network, severity and subtypes of CM using the Childhood Trauma Questionnaire were assessed and structural magnetic resonance imaging data from patients with MDD and healthy controls were analyzed in a mega-analysis comprising a total of 3872 participants aged between 13 and 89 years. Cortical thickness and surface area were extracted at each site using FreeSurfer.
Results
CM severity was associated with reduced cortical thickness in the banks of the superior temporal sulcus and supramarginal gyrus as well as with reduced surface area of the middle temporal lobe. Participants reporting both childhood neglect and abuse had a lower cortical thickness in the inferior parietal lobe, middle temporal lobe, and precuneus compared to participants not exposed to CM. In males only, regardless of diagnosis, CM severity was associated with higher cortical thickness of the rostral anterior cingulate cortex. Finally, a significant interaction between CM and age in predicting thickness was seen across several prefrontal, temporal, and temporo-parietal regions.
Conclusions
Severity and type of CM may impact cortical thickness and surface area. Importantly, CM may influence age-dependent brain maturation, particularly in regions related to the default mode network, perception, and theory of mind.
To investigate the morphology and dimensions of the vestibular aqueduct on axial, single-oblique and double-oblique computed tomography images.
Methods
The computed tomography temporal bone scans of 112 patients were retrospectively evaluated. Midpoint and opercular measurements were performed using axial, single-oblique and double-oblique images. Morphometric analyses were also conducted. The vestibular aqueduct sizes on axial, single-oblique and double-oblique images were compared.
Results
At the midpoint, the mean (± standard deviation) vestibular aqueduct measured 0.61 ± 0.23 mm, 0.74 ± 0.27 mm and 0.82 ± 0.38 mm on axial, single-oblique and double-oblique images, respectively; at the operculum, the vestibular aqueduct measured 0.91 ± 0.30 mm, 1.11 ± 0.45 mm and 1.66 ± 1.07 mm on the respective images. The co-efficients of variation of the vestibular aqueduct measured at the midpoint were 37.4 per cent, 36.5 per cent and 47.5 per cent on axial, single-oblique and double-oblique images, respectively; at the operculum, the measurements were 33.0 per cent, 40.5 per cent and 64.5 per cent. Regarding morphology, the vestibular aqueduct was fissured (33.5 per cent), tubular (64.3 per cent) or invisible (2.2 per cent).
Conclusion
The morphology and dimensions of the vestibular aqueduct were highly variable among axial, single-oblique and double-oblique images.
Fully resolved measurements of turbulent boundary layers are reported for the Reynolds number range
$Re_{\unicode[STIX]{x1D70F}}=6000{-}20\,000$
. Despite several decades of research in wall-bounded turbulence there is still controversy over the behaviour of streamwise turbulence intensities near the wall, especially at high Reynolds numbers. Much of it stems from the uncertainty in measurement due to finite spatial resolution. Conventional hot-wire anemometry is limited for high Reynolds number measurements due to limited spatial resolution issues that cause attenuation in the streamwise turbulence intensity profile near the wall. To address this issue we use the nano-scale thermal anemometry probe (NSTAP), developed at Princeton University to conduct velocity measurements in the high Reynolds number boundary layer facility at the University of Melbourne. The NSTAP has a sensing length almost one order of magnitude smaller than conventional hot-wires. This enables us to acquire fully resolved velocity measurements of turbulent boundary layers up to
$Re_{\unicode[STIX]{x1D70F}}=20\,000$
. Results show that in the near-wall region, the viscous-scaled streamwise turbulence intensity grows with
$Re_{\unicode[STIX]{x1D70F}}$
in the Reynolds number range of the experiments. A second outer peak in the streamwise turbulence intensity is also shown to emerge at the highest Reynolds numbers. Moreover, the energy spectra in the near-wall region show excellent inner scaling over the small to moderate wavelength range, followed by a large-scale influence that increases with Reynolds number. Outer scaling in the outer region is found to collapse the energy spectra over high wavelengths across various Reynolds numbers.
The influence of heat treatment (homogenization) on the microstructure, mechanical behavior, and soft magnetic properties of a face-centered cubic (fcc)-based high-entropy alloy (HEA), Fe29Co28Ni29Cu7Ti7, fabricated by casting, was investigated in detail. The as-cast Fe29Co28Ni29Cu7Ti7 HEA was composed of a primary fcc phase containing coherent dispersed L12 nanoprecipitates and trace amounts of a needle-like phase. The tensile yield strength (σ0.2), ultimate strength, and total elongation of the as-cast alloy are 917 MPa, 1060 MPa, and 1.8%, respectively. Following homogenization, the alloy having a single fcc phase shows a decrease of ∼ 55% in yield strength and a decrease of ∼ 36% in ultimate strength; however, the total elongation is increased from 1.8 to 52%. Saturation magnetization (Msat) is decreased from 111.54 to 110.34 Am2/kg, by contrast, coercivity (Hc) is increased from 266.65 to 966.89 A/m. The dissolution of precipitates and grain growth are mainly responsible for the changes in magnetic properties and mechanical behavior.
Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)–germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.