We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
Introduction: Acute aortic syndrome (AAS) is a time sensitive aortic catastrophe that is often misdiagnosed. There are currently no Canadian guidelines to aid in diagnosis. Our goal was to adapt the existing American Heart Association (AHA) and European Society of Cardiology (ESC) diagnostic algorithms for AAS into a Canadian evidence based best practices algorithm targeted for emergency medicine physicians. Methods: We chose to adapt existing high-quality clinical practice guidelines (CPG) previously developed by the AHA/ESC using the GRADE ADOLOPMENT approach. We created a National Advisory Committee consisting of 21 members from across Canada including academic, community and remote/rural emergency physicians/nurses, cardiothoracic and cardiovascular surgeons, cardiac anesthesiologists, critical care physicians, cardiologist, radiologists and patient representatives. The Advisory Committee communicated through multiple teleconference meetings, emails and a one-day in person meeting. The panel prioritized questions and outcomes, using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess evidence and make recommendations. The algorithm was prepared and revised through feedback and discussions and through an iterative process until consensus was achieved. Results: The diagnostic algorithm is comprised of an updated pre test probability assessment tool with further testing recommendations based on risk level. The updated tool incorporates likelihood of an alternative diagnosis and point of care ultrasound. The final best practice diagnostic algorithm defined risk levels as Low (0.5% no further testing), Moderate (0.6-5% further testing required) and High ( >5% computed tomography, magnetic resonance imaging, trans esophageal echocardiography). During the consensus and feedback processes, we addressed a number of issues and concerns. D-dimer can be used to reduce probability of AAS in an intermediate risk group, but should not be used in a low or high-risk group. Ultrasound was incorporated as a bedside clinical examination option in pre test probability assessment for aortic insufficiency, abdominal/thoracic aortic aneurysms. Conclusion: We have created the first Canadian best practice diagnostic algorithm for AAS. We hope this diagnostic algorithm will standardize and improve diagnosis of AAS in all emergency departments across Canada.
Co-receptor tropism has been identified to correlate with HIV-1 transmission and the disease progression in patients. A molecular epidemiology investigation of co-receptor tropism is important for clinical practice and effective control of HIV-1. In this study, we investigated the co-receptor tropism on HIV-1 variants of 85 antiretroviral-naive patients with Geno2pheno algorithm at a false-positive rate of 10%. Our data showed that a majority of the subjects harboured the CCR5-tropic virus (81.2%, 69/85). No significant differences in gender, age, baseline CD4+ T-cell counts and transmission routes were observed between subjects infected with CXCR4-tropic or CCR5-tropic virus. The co-receptor tropism appeared to be associated with the virus genotype; a significantly more CXCR4-use was predicted in CRF01_AE infections whereas all CRF07_BC and CRF08_BC were predicted to use CCR5 co-receptor. Sequences analysis of V3 revealed a higher median net charge in the CXCR4 viruses over CCR5 viruses (4.0 vs. 3.0, P < 0.05). The predicted N-linked glycosylation site between amino acids 6 and 8 in the V3 region was conserved in CCR5 viruses, but not in CXCR4 viruses. Besides, variable crown motifs were observed in both CCR5 and CXCR4 viruses, of which the most prevalent motif GPGQ existed in both viral tropism and almost all genotypes identified in this study except subtype B. These findings may offer important implications for clinical practice and enhance our understanding of HIV-1 biology.
The crustacean fauna of the Insect Bed (late Eocene), Isle of Wight is reviewed. The fauna comprises the branchiopod Branchipodites vectensis Woodward, 1879, ostracod Potamocypris brodiei Jones and Sherborn, 1889, and isopod Eosphaeroma margarum (Desmarest, 1822). In addition a new clam shrimp (Crustacea: Diplostraca: Spinicaudata) is described and named Paraleptestheria mitchelli sp. nov. This is the first record of the genus outside China and the first ‘conchostracan' to be described from the European Cenozoic.
To investigate a Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak event involving multiple healthcare facilities in Riyadh, Saudi Arabia; to characterize transmission; and to explore infection control implications.
Design
Outbreak investigation.
Setting
Cases presented in 4 healthcare facilities in Riyadh, Saudi Arabia: a tertiary-care hospital, a specialty pulmonary hospital, an outpatient clinic, and an outpatient dialysis unit.
Methods
Contact tracing and testing were performed following reports of cases at 2 hospitals. Laboratory results were confirmed by real-time reverse transcription polymerase chain reaction (rRT-PCR) and/or genome sequencing. We assessed exposures and determined seropositivity among available healthcare personnel (HCP) cases and HCP contacts of cases.
Results
In total, 48 cases were identified, involving patients, HCP, and family members across 2 hospitals, an outpatient clinic, and a dialysis clinic. At each hospital, transmission was linked to a unique index case. Moreover, 4 cases were associated with superspreading events (any interaction where a case patient transmitted to ≥5 subsequent case patients). All 4 of these patients were severely ill, were initially not recognized as MERS-CoV cases, and subsequently died. Genomic sequences clustered separately, suggesting 2 distinct outbreaks. Overall, 4 (24%) of 17 HCP cases and 3 (3%) of 114 HCP contacts of cases were seropositive.
Conclusions
We describe 2 distinct healthcare-associated outbreaks, each initiated by a unique index case and characterized by multiple superspreading events. Delays in recognition and in subsequent implementation of control measures contributed to secondary transmission. Prompt contact tracing, repeated testing, HCP furloughing, and implementation of recommended transmission-based precautions for suspected cases ultimately halted transmission.
The current experiment aimed at assessing the effects of dietary supplementation of guanidino acetic acid (GAA) on growth performance, thigh meat quality and development of small intestine in broilers. A total of 360 1-day-old female broiler chicks were distributed randomly to four groups of 90 birds each, and each group received GAA dosages of 0, 0.4, 0.8 and 1.2 g/kg of feed dry matter. During the whole experiment of 60 days, broilers had ad libitum access to water and feed and the feed intake was recorded daily. All broilers were weighed before and after the experiment, and 30 broilers of each group were selected randomly to slaughter at the end. Increasing dietary supplementation of GAA increased final live weight and daily body weight gain, gain-to-feed ratio, thigh muscle pH value and fibre diameter of broilers, but decreased daily feed intake, drip loss, cooking loss, shear force value, hardness, gumminess and chewiness of thigh meat. In addition, increasing supplementation of GAA quadratically increased duodenal, jejunal and ileal villus height and width and ratio of villus height to crypt depth, but decreased crypt depth. The results indicated that GAA as a feed additive may support better development of small intestine, thereby resulting in improvement of growth performance and meat quality of broilers.
The present study investigated the adsorption behaviour of Direct Orange 34, a highly toxic dye used in textile industries in Tunisia, on modified kaolinite-rich clays. A kaolin from the Sidi Bader (SDB) area was activated with hydrochloric acid to create the activated clay referred to hearafter as SDBa, or treated with FeSO4•7H2O to obtain its Fe-saturated form, Fe-SDB. The adsorbents were characterized by X-ray diffraction, X-ray fluorescence, transmission electron microscopy, BET surface area and zeta-potential measurements. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The estimated adsorption capacities (qm) for the dye were improved in the Fe-loaded samples. The good fit (R2 = 0.99) with a pseudo-second order expression suggests that the adsorption process could be effective following a chemisorption mechanism. At acidic pH, the optimum dye-retention rate was achieved for SDB (83%) after 60 min. The uptake decreased at neutral pH and increased again in alkaline media. This behaviour might be explained by the formation of covalent bonds between the OH radicals on the external surface and the negatively charged dye molecules. On the other hand, Fe impregnation increased the zeta potential of kaolinite, leading to a greater adsorption capacity compared to its natural and acid-activated counterparts. In addition, the adsorption rate increased when increasing the suspension temperature from 283 to 313 K. The modified kaolinite-rich materials showed satisfactory affinity for adsorbing this reactive dye.
The triplite LiFeSO4F displays both the highest potential ever reported for an Fe-based compound, as well as a comparable specific energy with that of popular LiFePO4. The synthesis is still a challenge because the present approaches are connected with long time, special equipments or organic reagents, etc. In this work, the triplite LiFeSO4F powder was synthesized through an ambient two-step solid-state route. The reaction process and phase purity were analyzed, coupled with structure refinement and electrochemical test.
OBJECTIVES/SPECIFIC AIMS: Compare effectiveness of a patient case-based, interactive teaching approach that included optional student genotyping with traditional didactic teaching strategies for increasing students’ knowledge and ability to effectively use pharmacogenomic data in clinical decision making. METHODS/STUDY POPULATION: The UF College of Pharmacy offers a required Personalized Medicine (PM) course for pharmacy students as well as an elective course, Clinical Applications of Personalized Medicine (CAPM). Students dual enrolled in the PM and elective CAPM courses comprised the intervention (INT) group, with interactive patient case-based teaching and the option to undergo personal genotyping, whereas students enrolled in PM alone comprised the control (CTR) group, which primarily used a traditional didactic teaching format and did not include personal genotyping. Both groups completed a pre- and post-course patient case-based test (15 questions/1 point each) to evaluate their knowledge and abilities to apply genotype and other patient-specific data to drug therapy recommendations. Pre- and post-course test scores for knowledge were compared between the INT and CTR groups using the Student t-test. RESULTS/ANTICIPATED RESULTS: In total, 52 students completed surveys (INT group, n=21; CTR group, n=31). Race was similar between groups, but there were fewer females in the INT compared with CTR group (8 vs. 22, p=0.02). Pre-course knowledge scores did not differ between INT and CTR groups (6.8±2.2 vs. 6.3±1.6 respectively, p=0.34), however, post-course scores were significantly higher in the INT Versus CTR group (10.0±2.3 vs. 7.5±1.7, p<0.0001). DISCUSSION/SIGNIFICANCE OF IMPACT: There have been significant advancements in the clinical applications of pharmacogenomic and genomic data, however, barriers to routine clinical adoption of genomic medicine persist. Developing education and training methods that equip practitioners to effectively translate genomic data into evidence-based clinical recommendations has been identified as a key strategy to overcome such barriers. Our data suggest that a personalized medicine course that employs patient-centered, case-based teaching strategies and includes optional personal genotyping for students compared with traditional didactic instruction improves students’ knowledge and abilities to apply pharmacogenomic data in practice-based scenarios. These results can inform future strategies for educating healthcare professionals on the clinical use of pharmacogenomic and genomic data.
Numerical investigation of the strong interplay between a cavity and a store under supersonic inflow condition is conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). Pressure fluctuations in the cavity are analyzed with smooth pseudo Winger-Vile distribution method and the time-frequency features are obtained. The effects of fluctuating flow inside the cavity on the aerodynamic loads of the store are also studied. It was shown that when the store is falling through the shear layer, the self-sustained oscillation loop is destroyed and the cavity tone vanishes. Vortex structures concentrate in the back of the cavity, as a result the noise levels at the rear of the cavity increase. After the store falls out of the cavity, the oblique shock wave formed at store's head interferences with the shear layer, which changes the cavity tone frequencies. The forces and moments acting on the store fluctuate strongly influenced by highly unsteady flow-field. Affected by oblique shock and the impact of shear layer, the store's pitch up angle keeps rising up and reaches to 24° at its maximum.
Why do authoritarian regimes try to improve the quality of their governance? In the absence of democratic institutions to monitor, reward and punish their performance, authoritarian politicians are normally expected to seek their self-interest through corruption and rewards to cronies, rather than providing for the public welfare. However, the Chinese state has actively promoted improved governance in recent years, with greater attention to quality of life issues to balance the primary focus on sustaining rapid economic growth. This paper analyses intra-national variation in the provision of public goods in urban China and the impact of public goods on regime support. Does better governance lead to higher levels of public support for the regime, even in the absence of democratic elections? Our evidence suggests that it does, with a greater impact for the local level than for the centre.
Much can be learned from terrestrial planets that appear to have had the potential to be habitable, but failed to realize that potential. Mars shows evidence of a once hospitable surface environment. The reasons for its current state, and in particular its thin atmosphere and dry surface, are of great interest for what they can tell us about habitable zone planet outcomes. A main goal of the MAVEN mission is to observe Mars’ atmosphere responses to solar and space weather influences, and in particular atmosphere escape related to space weather ‘storms’ caused by interplanetary coronal mass ejections (ICMEs). Numerical experiments with a data-validated MHD model suggest how the effects of an observed moderately strong ICME compare to what happens during a more extreme event. The results suggest the kinds of solar and space weather conditions that can have evolutionary importance at a planet like Mars.
A field experiment was conducted to quantify changes in soil aggregation and aggregate-associated soil organic carbon (SOC) concentration 1, 3, 5 and 10 years after abandoned, salinized land in the Manasi River Basin was reclaimed for cotton (Gossypium hirsutum L.). Results showed that reclamation significantly increased SOC concentrations and SOC stocks. Specifically, 10 years of cotton production increased SOC concentrations by 45% in the 0–60 cm depth and SOC stocks by 35%. The SOC concentrations and stocks decreased as soil depth increased. Reclamation time, season and soil depth had significant interaction effects on SOC. The SOC concentrations were significantly and positively correlated with available soil nitrogen and available soil phosphorus. Compared with abandoned farmland, macro-aggregate-associated (>250 µm) SOC concentrations in the 0–60 cm depth increased by 47% after 5 years of cotton production and by 53% after 10 years of cotton production. The contribution of macro-aggregate-associated SOC to total SOC in the 0–60 cm depth increased by 87% after 5 years of cotton production and by 69% after 10 years of cotton production. The findings indicate that soil aggregates were more stable after abandoned, salinized farmland was reclaimed for cotton production. Furthermore, cotton production can increase SOC concentrations and sequester C in this arid area.
The objective of this study was to determine if a moderate or high reduction of dietary CP, supplemented with indispensable amino acids (IAA), would affect growth, intestinal morphology and immunological parameters of pigs. A total of 40 barrows (initial BW=13.50±0.50 kg, 45±2 day of age) were used in a completely randomized block design, and allocated to four dietary treatments containing CP levels at 20.00%, 17.16%, 15.30% and 13.90%, respectively. Industrial AA were added to meet the IAA requirements of pigs. After 4-week feeding, blood and tissue samples were obtained from pigs. The results showed that reducing dietary CP level decreased average daily gain, plasma urea nitrogen concentration and relative organ weights of liver and pancreas (P<0.01), and increased feed conversion ratio (P<0.01). Pigs fed the 13.90% CP diet had significantly lower growth performance than that of pigs fed higher CP at 20.00%, 17.16% or 15.30%. Moreover, reducing dietary CP level decreased villous height in duodenum (P<0.01) and crypt depth in duodenum, jejunum and ileum (P<0.01). The reduction in the dietary CP level increased plasma concentrations of methionine, alanine (P<0.01) and lysine (P<0.05), and decreased arginine (P<0.05). Intriguingly, reducing dietary CP level from 20.00% to 13.90% resulted in a significant decrease in plasma concentration of IgG (P<0.05), percentage of CD3+T cells of the peripheral blood (P<0.01), also down-regulated the mRNA abundance of innate immunity-related genes on toll-like receptor 4, myeloid differentiation factor 88 (P<0.01) and nuclear factor kappa B (P<0.05) in the ileum. These results indicate that reducing dietary CP level from 20.00% to 15.30%, supplemented with IAA, had no significant effect on growth performance and had a limited effect on immunological parameters. However, a further reduction of dietary CP level up to 13.90% would lead to poor growth performance and organ development, associated with the modifications of intestinal morphology and immune function.
Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10−13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).
Understanding the physiological mechanisms of biomass accumulation and partitioning in the grain, and the nitrogen (N) uptake associated with different plant densities and N management strategies, is essential for achieving both high yield and N use efficiency (NUE) in maize plants. A field experiment was conducted in 2013 and 2014, using five rates of N application and three plant densities (6·0, 7·5 and 9·0 plants/m2) in Quzhou County on the North China Plain (NCP). The objective was to evaluate whether higher plant density can produce more biomass allocated to the grain to achieve higher grain yield and to determine the optimal N management strategies for different plant densities. The highest grain yield and NUE were achieved in the 7·5 plants/m2 treatment; both the sub-optimal (6·0 plants/m2) and supra-optimal (9·0 plants/m2) plant densities resulted in diminished yield and NUE. Compared to 6·0 plants/m2, the 7·5 plants/m2 treatment displayed higher biomass accumulation during the grain-filling period and also exhibited more biomass allocated to kernels with similar total biomass accumulation compared with the 9·0 plants/m2 treatment, which contributed to its higher grain yield. The N uptake in the 7·5 plants/m2 treatment was similar to that in the 9·0 plants/m2 treatment up to pre-silking. However, the post-silking N uptake of the 7·5 plants/m2 treatment was 66·4 kg/ha, which was 29·1% higher than that of the 9·0 plants/m2 treatment. Furthermore, the highest maize grain yield was achieved in the 0·7 × optimal N rate (ONR × 0·7), ONR and ONR × 1·3 treatments for 6·0, 7·5 and 9·0 plants/m2, respectively, which suggests that different N management strategies are needed for different plant densities. In conclusion, selecting a planting density of 7·5 plants/m2 with an in-season root zone N management is a potentially effective strategy for achieving high grain yield and high NUE for maize production on the NCP.
Photovoltaic (PV) systems are progressively used for decentralized electricity generation. To obtain the maximum yield from such systems, optimisation of all components is essential. In this contribution, we provide a comprehensive modelling and sizing of PV systems for any location. Three applications are here presented providing real time monitoring of PV potential, accurate prediction of yield taking into account thermodynamic temperature effects, optimization of modules orientation addressing the effects of shading and efficient sizing of inverter for a higher yield output. When combined, these models can accurately predict the real time performance of any PV system.