We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (
$I\sim 2\times 10^{14}~\text{W}\cdot \text{cm}^{-2}$
) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20
$\pm$
5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target, a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.
The objective was to evaluate the distribution of coagulase-negative staphylococci (CNS) involved in periprosthetic-joint infections (PJIs) and to describe their susceptibility profile to antibiotics. We conducted a multicentre retrospective study in France, including 215 CNS PJIs between 2011 and 2015. CNS PJIs involved knees in 54% of the cases, hips in 39%, other sites in 7%. The distribution of the 215 strains was: Staphylococcus epidermidis 129 (60%), Staphylococcus capitis 24 (11%), Staphylococcus lugdunensis 21 (10%), Staphylococcus warneri 8 (4%), Staphylococcus hominis 7 (3%), Staphylococcus haemolyticus 7 (3%). More than half of the strains (52.1%) were resistant to methicillin, 40.9% to ofloxacin, 20% to rifampicin. The species most resistant to antibiotics were S. hominis, S. haemolyticus, S. epidermidis, with 69.7% of the strains resistant to methicillin and 30% simultaneously resistant to clindamycin, cotrimoxazole, ofloxacin and rifampicin. No strain was resistant to linezolid or daptomycin. In this study on CNS involved in PJIs, resistance to methicillin is greater than 50%. S. epidermidis is the most frequent and resistant species to antibiotics. Emerging species such S. lugdunensis, S. capitis and Staphylococcus caprae exhibit profiles more sensitive to antibiotics. The antibiotics most often active in vitro are linezolid and daptomycin.
The paramyxean parasite Marteilia refringens infects several bivalve species including European flat oysters Ostrea edulis and Mediterranean mussels Mytilus galloprovincialis. Sequence polymorphism allowed definition of three parasite types ‘M’, ‘O’ and ‘C’ preferably detected in oysters, mussels and cockles respectively. Transmission of the infection from infected bivalves to copepods Paracartia grani could be experimentally achieved but assays from copepods to bivalves failed. In order to contribute to the elucidation of the M. refringens life cycle, the dynamics of the infection was investigated in O. edulis, M. galloprovincialis and zooplankton over one year in Diana lagoon, Corsica (France). Flat oysters appeared non-infected while mussels were infected part of the year, showing highest prevalence in summertime. The parasite was detected by PCR in zooplankton particularly after the peak of prevalence in mussels. Several zooplanktonic groups including copepods, Cladocera, Appendicularia, Chaetognatha and Polychaeta appeared PCR positive. However, only the copepod species Paracartia latisetosa showed positive signal by in situ hybridization. Small parasite cells were observed in gonadal tissues of female copepods demonstrating for the first time that a copepod species other than P. grani can be infected with M. refringens. Molecular characterization of the parasite infecting mussels and zooplankton allowed the distinguishing of three Marteilia types in the lagoon.
For microorganisms, the preferred living state is adhering to surfaces that can lead to
the development of a biofilm. In drinking water networks, a biofilm can affect the
organoleptic quality of the water as well as whether it is safe to drink. This is due to
the probable presence of pathogens inside the biofilm which may be spread in the water. To
keep the water quality safe, sanitization processes are regularly carried out using
oxidizing biocides which can alter the physico-chemical properties of the material. Due to
their surface physico-chemical properties and their high corrosion resistance, stainless
steels seem to be good candidates for the making of drinking water systems. In this 2 year
study, stainless steel grades were compared with materials commonly used, in respect of
fouling, biofilm development and composition. The tested stainless steels include ferritic
(444/EN 1.4521), three austenitic (304L/EN 1.4307, 316L/EN 1.4404, and 316LN/EN 1.4429)
and two duplex (2304 /EN 1.4362, and 2205/EN 1.4462) grades. The experiments were
performed in a pilot specially designed to assess the material biocontamination on a
natural drinking water loop for more than 2 years. The results confirmed the significant
impact of the material on the biofilm development in terms of formation kinetic and
ecology. No differences were observed between stainless steel grades whereas they
displayed an intermediate behaviour compared to other materials. Corrosion attacks were
only observed on galvanised carbon steel while on stainless steels, negligible release
rates, much below international health requirements were measured. So stainless steels
offer a good compromise to make drinking water pipes.
The present study is motivated by a need to produce stability modes to assist in the understanding and control of unsteady separated flows. The flow configuration is a NACA 0015 aerofoil with laminar leading-edge separation and turbulent recirculation. In previous water tunnel experiments, this flow configuration was measured in an unperturbed (uncontrolled) separated state, and a harmonically perturbed (controlled) reattached state. This study presents numerical data of the unperturbed case, and recovers stability modes to describe the evolution of perturbations in this environment. The unperturbed flow is numerically generated using large eddy simulation. Its temporal properties are quantified via a Fourier analysis of the velocity time history at selected points in space. The leading-edge shear layer instability is characterized by instantaneous vortex structures, and the bluff body shedding is illustrated by proper orthogonal decomposition modes. Statistical measures of the velocity field agree well with the water tunnel measurements. Finally a stability analysis is undertaken using a triple decomposition to distinguish between the time averaged field, the unsteady scales of motion, and a coherent wave (perturbation). This analysis identifies that perturbations in the region immediately downstream of the separated shear layer have the highest spatial growth rates. The associated frequency is of the order of the sub-harmonic of the shear layer instability.
The analysis of the instabilities in an unsteady turbulent flow is undertaken using a triple decomposition to distinguish between the time-averaged field, a coherent wave and the remaining turbulent scales of motion. The stability properties of the coherent scale are of interest. Previous studies have relied on prescribed constants to close the equations governing the evolution of the coherent wave. Here we propose an approach where the model constants are determined only from the statistical measures of the unperturbed velocity field. Specifically, a nonlinear eddy-viscosity model is used to close the equations, and is a generalisation of earlier linear eddy-viscosity closures. Unlike previous models the proposed approach does not assume the same dissipation rate for the time- and phase-averaged fields. The proposed approach is applied to a previously published turbulent channel flow, which was harmonically perturbed by two vibrating ribbons located near the channel walls. The response of the flow was recorded at several downstream stations by phase averaging the probe measurements at the same frequency as the forcing. The experimentally measured growth rates and velocity profiles, are compared to the eigenvalues and eigenvectors resulting from the stability analysis undertaken herein. The modes recovered from the solution of the eigenvalue problem, using the nonlinear eddy-viscosity model, are shown to capture the experimentally measured spatial decay rates and mode shapes of the coherent scale.
The Lembo clay deposit occurs on orthogneiss, but it also comprises clays with litho-relicts of volcanic rocks. In this study, ten samples from two sites were investigated. The mineralogical compositions consisted of kaolinite + halloysite + illite + quartz + hematite + anatase ± rutile ± orthoclase ± sanidine ± magnetite ± maghemite ± goethite ± Ba-Al-Fe-phosphates ± carbonates ± sulphates. Kaolinite-halloysite and quartz are the prevailing minerals. Some volcanicderived clays contain Fe-rich kaolinite-halloysite (9.6–14.1 wt.% Fe2O3). The chemical compositions, colours and specific surface area (SSA) measurements reveal two groups of clays: one with a positive whiteness index (IB), small SSA and small Fe content, and the other showing a large SSA, negative IB and relatively large Fe contents. The compositions of the first group are close to those of clays from the Mayouom deposit (Cameroon), and from some European commercial kaolins used in ceramics. Relatively Fe-rich clay materials may conform to most formulations of earthen bricks. As a whole, the Lembo clay deposit comprises various compositions of kaolinitic clays, which may yield the opportunity for extensive application in ceramics.
An outbreak of infection with vancomycin-resistant Enterococcus faecium occurred at Hôtel-Dieu Hospital (Clermont-Ferrand, France). A case-control study was performed in the infectious diseases and hematology units of the hospital. Urinary catheter use (odds ratio [OR], 12 [95% confidence interval {CI}, 1.5-90]; P<.02), prior exposure to a third-generation cephalosporin (OR, 22 [95% CI, 3-152]; P = .002), and prior exposure to antianaerobials (OR, 11 [95% CI, 1.5-88]; P<.02) were independently predictive of vancomycin-resistant Enterococcus faecium carriage.
This work presents an original way for preparing TiO-based coatings by thermal spraying. As titanium monoxide is oxidized by the mere trace of oxygen contained in hydrogen, it is obvious that plasma spraying of TiO powder does not lead easily to the formation of a titanium monoxide coating. However, thermodynamical calculations show that the conditions necessary for the preparation of TiO can be reached, at the titanium melting temperature (Tm=1933 K), when oxygen reacts with liquid metal in the presence of excess carbon. These results have led to experiments in which TiO-based coatings have been prepared by spraying a stoichiometric mixture of graphite and titanium grains onto cast iron in air. In optimal conditions, a gas-tight hard coating (1000 ± 15 HV3) of a TiO-based phase (composition: TiO0.81±0.06C0.04±0.02) has been obtained.
We use High Resolution Electron Microscopy (HRTEM)
together with Electron Energy Loss Spectroscopy (EELS) to analyze
the crystallography and the chemical configuration of interfaces
in a state-of-the-art
La2/3Sr1/3MnO3/SrTiO3/La2/3Sr1/3MnO3
tunnel junction. EELS indicates that manganese ions keep their
bulk valency up to the last atomic plane in contact with the
insulator. Tunnel magnetoresistance however decreases with
temperature faster than magnetisation in these samples.
Quantitative HRTEM reveals some local departures from chemical
abruptness at the interfaces, which could play a role in this
decrease.
There is an ever-increasing need to be able to predict and control high subsonic to high supersonic speed flows for the optimal design of aerospace vehicles. In this Mach number range, large variations in pressure can occur which can also lead to large density variations. Such variations in the state variables can have a significant impact on both the mean and turbulence dynamics.
Improving the prediction and control of compressible flows requires an accurate description of the large scale (structure) dynamics and of the mean and other statistical properties of the flow. Thus, a better understanding of the dynamics and improvements in the modeling of these flow features is essential. Within the framework of the ensemble-averaged Navier–Stokes equations, compressible flows have generally been computed using mass-weighted (Favre-averaged) variables. Higher-order correlations with incompressible counterparts have been modeled by variable density extensions to the incompressible form; meanwhile higher-order correlations unique to the compressible form have been isolated. Some of these compressibility terms, such as dilatation dissipation and the compressible heat flux, have been widely used. Others, such as mass flux or pressure-dilatation, have seen more limited application, as have explicit compressibility corrections to standard model terms. Many calculations have been performed neglecting (with or without justification) extra compressible terms and using simple variable density extensions of the equations.
The goal of this chapter is to provide the reader with an overall perspective of the experimental and numerical study of compressible, turbulent shear layers including the effect of shock-turbulence interactions. Concepts and relevant modeling issues associated with turbulent boundary layers, mixing layers and wakes are discussed.
The temporal dynamics of large-scale structures in a plane turbulent mixing layer
are studied through the development of a low-order dynamical system of ordinary
differential equations (ODEs). This model is derived by projecting Navier–Stokes
equations onto an empirical basis set from the proper orthogonal decomposition
(POD) using a Galerkin method. To obtain this low-dimensional set of equations, a
truncation is performed that only includes the first POD mode for selected streamwise/spanwise
(k1/k3) modes. The initial truncations
are for k3 = 0; however, once
these truncations are evaluated, non-zero spanwise wavenumbers are added. These
truncated systems of equations are then examined in the pseudo-Fourier space in
which they are solved and by reconstructing the velocity field. Two different methods
for closing the mean streamwise velocity are evaluated that show the importance
of introducing, into the low-order dynamical system, a term allowing feedback between
the turbulent and mean flows. The results of the numerical simulations show a
strongly periodic flow indicative of the spanwise vorticity. The simulated flow had the
correct energy distributions in the cross-stream direction. These models also indicated
that the events associated with the centre of the mixing layer lead the temporal
dynamics. For truncations involving both spanwise and streamwise wavenumbers,
the reconstructed velocity field exhibits the main spanwise and streamwise vortical
structures known to exist in this flow. The streamwise aligned vorticity is shown to
connect spanwise vortex tubes.
Sequences from complete mitochondrial control regions (mtDNA CR) were used
to infer phylogenetic relationships in 25 Cervinae taxa. Cervus splits into
clades that are partially discordant with current species
delimitations. Nominate Cervus elaphus includes two divergent clades
that must be referred to as species elaphus (European elaphoid deer)
and canadensis (Eurasian and North American wapitoid deer). Cervus
nippon splits into Japanese and continental plus Taiwan sika. Père
David's deer is nested within Cervus, suggesting that Elaphurus should
be merged with Cervus. European and Persian fallow deer are genetically
divergent and distinct species. Sequence length varied due to a CR-I
insertion, tandemly repeated twice in rusa and sambar deer, sika and
wapiti, and repeated up to six times in a clade of Japanese sika. Variable
copy numbers of this repeat are also fixed in different sika subspecies,
and could be used as a diagnostic marker for subspecies. Sequence
variability at the mtDNA CR is informative for defining species and
subspecies boundaries, and for locating the geographical origin of
captive-reared stocks. Natural and farmed populations of some species
have been deeply affected by human management and the conservation of
deer populations would be aided by the appropriate identification of
the different evolutionary and taxonomic units.
Large-scale structures in a plane turbulent mixing layer are studied through the use of
the proper orthogonal decomposition (POD). Extensive experimental measurements
are obtained in a turbulent plane mixing layer by means of two cross-wire rakes
aligned normal to the direction of the mean shear and perpendicular to the mean
flow direction. The measurements are acquired well into the asymptotic region. From
the measured velocities the two-point spectral tensor is calculated as a function of
separation in the cross-stream direction and spanwise and streamwise wavenumbers.
The continuity equation is then used for the calculation of the non-measured components
of the tensor. The POD is applied using the cross-spectral tensor as its kernel.
This decomposition yields an optimal basis set in the mean square sense. The energy
contained in the POD modes converges rapidly with the first mode being dominant
(49% of the turbulent kinetic energy). Examination of these modes shows that the
first mode contains evidence of both known flow organizations in the mixing layer, i.e.
quasi-two-dimensional spanwise structures and streamwise aligned vortices. Using the
shot-noise theory the dominant mode of the POD is transformed back into physical
space. This structure is also indicative of the known flow organizations.
The local critical current (Ic) at 77 K measured at the mm scale in a 60 mm long sample of YBa2Cu3O7−δ prepared by a melting zone process is correlated to the microstructure. Lower values of Ic (<20 A) were obtained in a part of the sample which optical microscope examination showed to be generally polycrystalline. In contrast, the rest of the sample, consisting mostly of large textured domains, gave values for Ic of 120 A and above. Transmission electron microscope observations revealed that the textured domains contain internal boundaries. Depending on the scale of observation, the misorientation angles across the boundaries could vary from a few tenths of a degree up to a few degrees. This seems characteristic for boundaries in textured material which allow strong coupling of the superconducting current across themselves.
Two quite different types of microstructures have been detected for MgTiO3-enriched LiTaO3 ceramics corresponding either to small size grains and open porosity or to large size grains with closed porosity and appearance of microcracks. The first structure appears in short sintering processes at relatively low temperature. The textural change is explained by transitory formation of a grain boundary phase that leads to quick coalescence of the small grains.