We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is mixed evidence on increasing rates of psychiatric disorders and symptoms during the coronavirus disease 2019 (COVID-19) pandemic in 2020. We evaluated pandemic-related psychopathology and psychiatry diagnoses and their determinants in the Brazilian Longitudinal Study of Health (ELSA-Brasil) São Paulo Research Center.
Methods
Between pre-pandemic ELSA-Brasil assessments in 2008–2010 (wave-1), 2012–2014 (wave-2), 2016–2018 (wave-3) and three pandemic assessments in 2020 (COVID-19 waves in May–July, July–September, and October–December), rates of common psychiatric symptoms, and depressive, anxiety, and common mental disorders (CMDs) were compared using the Clinical Interview Scheduled-Revised (CIS-R) and the Depression Anxiety Stress Scale-21 (DASS-21). Multivariable generalized linear models, adjusted by age, gender, educational level, and ethnicity identified variables associated with an elevated risk for mental disorders.
Results
In 2117 participants (mean age 62.3 years, 58.2% females), rates of CMDs and depressive disorders did not significantly change over time, oscillating from 23.5% to 21.1%, and 3.3% to 2.8%, respectively; whereas rate of anxiety disorders significantly decreased (2008–2010: 13.8%; 2016–2018: 9.8%; 2020: 8%). There was a decrease along three wave-COVID assessments for depression [β = −0.37, 99.5% confidence interval (CI) −0.50 to −0.23], anxiety (β = −0.37, 99.5% CI −0.48 to −0.26), and stress (β = −0.48, 99.5% CI −0.64 to −0.33) symptoms (all ps < 0.001). Younger age, female sex, lower educational level, non-white ethnicity, and previous psychiatric disorders were associated with increased odds for psychiatric disorders, whereas self-evaluated good health and good quality of relationships with decreased risk.
Conclusion
No consistent evidence of pandemic-related worsening psychopathology in our cohort was found. Indeed, psychiatric symptoms slightly decreased along 2020. Risk factors representing socioeconomic disadvantages were associated with increased odds of psychiatric disorders.
There is still little knowledge of objective suicide risk stratification.
Methods
This study aims to develop models using machine-learning approaches to predict suicide attempt (1) among survey participants in a nationally representative sample and (2) among participants with lifetime major depressive episodes. We used a cohort called the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) that was conducted in two waves and included a nationally representative sample of the adult population in the United States. Wave 1 involved 43 093 respondents and wave 2 involved 34 653 completed face-to-face reinterviews with wave 1 participants. Predictor variables included clinical, stressful life events, and sociodemographic variables from wave 1; outcome included suicide attempt between wave 1 and wave 2.
Results
The model built with elastic net regularization distinguished individuals who had attempted suicide from those who had not with an area under the ROC curve (AUC) of 0.89, balanced accuracy 81.86%, specificity 89.22%, and sensitivity 74.51% for the general population. For participants with lifetime major depressive episodes, AUC was 0.89, balanced accuracy 81.64%, specificity 85.86%, and sensitivity 77.42%. The most important predictor variables were a diagnosis of borderline personality disorder, post-traumatic stress disorder, and being of Asian descent for the model in all participants; and previous suicide attempt, borderline personality disorder, and overnight stay in hospital because of depressive symptoms for the model in participants with lifetime major depressive episodes. Random forest and artificial neural networks had similar performance.
Conclusions
Risk for suicide attempt can be estimated with high accuracy.
Patients with obsessive-compulsive disorder (OCD) are at increased risk for suicide attempt (SA) compared to the general population. However, the significant risk factors for SA in this population remains unclear – whether these factors are associated with the disorder itself or related to extrinsic factors, such as comorbidities and sociodemographic variables. This study aimed to identify predictors of SA in OCD patients using a machine learning algorithm.
Methods
A total of 959 outpatients with OCD were included. An elastic net model was performed to recognize the predictors of SA among OCD patients, using clinical and sociodemographic variables.
Results
The prevalence of SA in our sample was 10.8%. Relevant predictors of SA founded by the elastic net algorithm were the following: previous suicide planning, previous suicide thoughts, lifetime depressive episode, and intermittent explosive disorder. Our elastic net model had a good performance and found an area under the curve of 0.95.
Conclusions
This is the first study to evaluate risk factors for SA among OCD patients using machine learning algorithms. Our results demonstrate an accurate risk algorithm can be created using clinical and sociodemographic variables. All aspects of suicidal phenomena need to be carefully investigated by clinicians in every evaluation of OCD patients. Particular attention should be given to comorbidity with depressive symptoms.
Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level.
Methods
We examined baseline (2008–2010) and follow-up (2012–2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression.
Results
We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76–0.82), 0.71 (95% CI 0.66–0.77), 0.90 (95% CI 0.86–0.95) for analyses 1, 2, and 3, respectively.
Conclusions
Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.