We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The perioperative complications rate in paediatric cardiac surgery, as well as the failure-to-rescue impact, is less known in low- and middle-income countries.
Aim:
To evaluate perioperative complications rate, mortality related to complications, different patients’ demographics, and procedural risk factors for perioperative complication and post-operative death.
Methods:
Risk factors for perioperative complications and operative mortality were assessed in a retrospective single-centre study which included 296 consecutive children undergoing cardiac surgery.
Results:
Overall mortality was 5.7%. Seventy-three patients (24.7%) developed 145 perioperative complications and had 17 operative mortalities (23.3%). There was a strong association between the number of perioperative complications and mortality – 8.1% among patients with only 1 perioperative complication, 35.3% – with 2 perioperative complications, and 42.1% – with 3 or more perioperative complications (p = 0.007). Risk factors of perioperative complications were younger age (odds ratio 0.76; (95% confidence interval 0.61, 0.93), previous cardiac surgery (odds ratio 3.5; confidence interval 1.33, 9.20), extracardiac structural anomalies (odds ratio 3.03; confidence interval 1.27, 7.26), concomitant diseases (odds ratio 3.23; confidence interval 1.34, 7.72), and cardiopulmonary bypass (odds ratio 6.33; confidence interval 2.45, 16.4), whereas the total number of perioperative complications per patient was the only predictor of operative death (odds ratio 1.89; confidence interval 1.06, 3.37).
Conclusions:
In a program with limited systemic resources, failure-to-rescue is a major contributor to operative mortality in paediatric cardiac surgery. Despite the comparable crude mortality, the operative mortality among patients with perioperative complications in our series was significantly higher than in the developed world. A number of initiatives are needed in order to improve failure-to-rescue rates in low- and middle-income countries.
Surgery for CHD has been slow to develop in parts of the former Soviet Union. The impact of an 8-year surgical assistance programme between an emerging centre and a multi-disciplinary international team that comprised healthcare professionals from developed cardiac programmes is analysed and presented.
Material and methods
The international paediatric assistance programme included five main components – intermittent clinical visits to the site annually, medical education, biomedical engineering support, nurse empowerment, and team-based practice development. Data were analysed from visiting teams and local databases before and since commencement of assistance in 2007 (era A: 2000–2007; era B: 2008–2015). The following variables were compared between periods: annual case volume, operative mortality, case complexity based on Risk Adjustment for Congenital Heart Surgery (RACHS-1), and RACHS-adjusted standardised mortality ratio.
Results
A total of 154 RACHS-classifiable operations were performed during era A, with a mean annual case volume by local surgeons of 19.3 at 95% confidence interval 14.3–24.2, with an operative mortality of 4.6% and a standardised mortality ratio of 2.1. In era B, surgical volume increased to a mean of 103.1 annual cases (95% confidence interval 69.1–137.2, p<0.0001). There was a non-significant (p=0.84) increase in operative mortality (5.7%), but a decrease in standardised mortality ratio (1.2) owing to an increase in case complexity. In era B, the proportion of local surgeon-led surgeries during visits from the international team increased from 0% (0/27) in 2008 to 98% (58/59) in the final year of analysis.
Conclusions
The model of assistance described in this report led to improved adjusted mortality, increased case volume, complexity, and independent operating skills.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.