The ability of live yeasts to modulate pig intestinal cell signals in response to infection with Escherichia coli F4ac (ETEC) has not been studied in-depth. The aim of this trial was to evaluate the effect of Saccharomyces cerevisiae CNCM I-4407 (Sc), supplied at different times, on the transcriptome profile of the jejunal mucosa of pigs 24 h after infection with ETEC. In total, 20 piglets selected to be ETEC-susceptible were weaned at 24 days of age (day 0) and allotted by litter to one of following groups: control (CO), CO+colistin (AB), CO+5×1010 colony-forming unit (CFU) Sc/kg feed, from day 0 (PR) and CO+5×1010 CFU Sc/kg feed from day 7 (CM). On day 7, the pigs were orally challenged with ETEC and were slaughtered 24 h later after blood sampling for haptoglobin (Hp) and C-reactive protein (CRP) determination. The jejunal mucosa was sampled (1) for morphometry; (2) for quantification of proliferation, apoptosis and zonula occludens (ZO-1); (3) to carry out the microarray analysis. A functional analysis was carried out using Gene Set Enrichment Analysis. The normalized enrichment score (NES) was calculated for each gene set, and statistical significance was defined when the False Discovery Rate % was <25 and P-values of NES were <0.05. The blood concentration of CRP and Hp, and the score for ZO-1 integrity on the jejunal villi did not differ between groups. The intestinal crypts were deeper in the AB (P=0.05) and the yeast groups (P<0.05) than in the CO group. Antibiotic treatment increased the number of mitotic cells in intestinal villi as compared with the control group (P<0.05). The PR group tended to increase the mitotic cells in villi and crypts and tended to reduce the cells in apoptosis as compared with the CM group. The transcriptome profiles of the AB and PR groups were similar. In both groups, the gene sets involved in mitosis and in mitochondria development ranked the highest, whereas in the CO group, the gene sets related to cell junction and anion channels were affected. In the CM group, the gene sets linked to the metabolic process, and transcription ranked the highest; a gene set linked with a negative effect on growth was also affected. In conclusion, the constant supplementation in the feed with the strain of yeast tested was effective in counteracting the detrimental effect of ETEC infection in susceptible pigs limits the early activation of the gene sets related to the impairment of the jejunal mucosa.