We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate a Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak event involving multiple healthcare facilities in Riyadh, Saudi Arabia; to characterize transmission; and to explore infection control implications.
Design
Outbreak investigation.
Setting
Cases presented in 4 healthcare facilities in Riyadh, Saudi Arabia: a tertiary-care hospital, a specialty pulmonary hospital, an outpatient clinic, and an outpatient dialysis unit.
Methods
Contact tracing and testing were performed following reports of cases at 2 hospitals. Laboratory results were confirmed by real-time reverse transcription polymerase chain reaction (rRT-PCR) and/or genome sequencing. We assessed exposures and determined seropositivity among available healthcare personnel (HCP) cases and HCP contacts of cases.
Results
In total, 48 cases were identified, involving patients, HCP, and family members across 2 hospitals, an outpatient clinic, and a dialysis clinic. At each hospital, transmission was linked to a unique index case. Moreover, 4 cases were associated with superspreading events (any interaction where a case patient transmitted to ≥5 subsequent case patients). All 4 of these patients were severely ill, were initially not recognized as MERS-CoV cases, and subsequently died. Genomic sequences clustered separately, suggesting 2 distinct outbreaks. Overall, 4 (24%) of 17 HCP cases and 3 (3%) of 114 HCP contacts of cases were seropositive.
Conclusions
We describe 2 distinct healthcare-associated outbreaks, each initiated by a unique index case and characterized by multiple superspreading events. Delays in recognition and in subsequent implementation of control measures contributed to secondary transmission. Prompt contact tracing, repeated testing, HCP furloughing, and implementation of recommended transmission-based precautions for suspected cases ultimately halted transmission.
We explore the transformation of a site into a place of remembrance by evaluating the life history of an urnfield at Cerro de Trincheras, Sonora, Mexico. Prehispanic inhabitants used this cemetery as a cremation burial ground ca. AD 1300–1450. Memory of the cemetery persisted into historical times among inhabitants of the area, but its use changed. We argue that critical and contextualized approaches to cemeteries are needed to understand the complexity of how burial spaces are used through time.
The Taipan galaxy survey (hereafter simply ‘Taipan’) is a multi-object spectroscopic survey starting in 2017 that will cover 2π steradians over the southern sky (δ ≲ 10°, |b| ≳ 10°), and obtain optical spectra for about two million galaxies out to z < 0.4. Taipan will use the newly refurbished 1.2-m UK Schmidt Telescope at Siding Spring Observatory with the new TAIPAN instrument, which includes an innovative ‘Starbugs’ positioning system capable of rapidly and simultaneously deploying up to 150 spectroscopic fibres (and up to 300 with a proposed upgrade) over the 6° diameter focal plane, and a purpose-built spectrograph operating in the range from 370 to 870 nm with resolving power R ≳ 2000. The main scientific goals of Taipan are (i) to measure the distance scale of the Universe (primarily governed by the local expansion rate, H0) to 1% precision, and the growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the total mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of dark matter halo and stellar mass and environment. The final survey, which will be completed within 5 yrs, will consist of a complete magnitude-limited sample (i ⩽ 17) of about 1.2 × 106 galaxies supplemented by an extension to higher redshifts and fainter magnitudes (i ⩽ 18.1) of a luminous red galaxy sample of about 0.8 × 106 galaxies. Observations and data processing will be carried out remotely and in a fully automated way, using a purpose-built automated ‘virtual observer’ software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio; it will become the primary redshift and optical spectroscopic reference catalogue for the local extragalactic Universe in the southern sky for the coming decade.
Attentional impairment is a core cognitive feature of major depressive disorder (MDD) and bipolar disorder (BD). However, little is known of the characteristics of response time (RT) distributions from attentional tasks. This is crucial to furthering our understanding of the profile and extent of cognitive intra-individual variability (IIV) in mood disorders.
Method.
A computerized sustained attention task was administered to 138 healthy controls and 158 patients with a mood disorder: 86 euthymic BD, 33 depressed BD and 39 medication-free MDD patients. Measures of IIV, including individual standard deviation (iSD) and coefficient of variation (CoV), were derived for each participant. Ex-Gaussian (and Vincentile) analyses were used to characterize the RT distributions into three components: mu and sigma (mean and standard deviation of the Gaussian portion of the distribution) and tau (the ‘slow tail’ of the distribution).
Results.
Compared with healthy controls, iSD was increased significantly in all patient samples. Due to minimal changes in average RT, CoV was only increased significantly in BD depressed patients. Ex-Gaussian modelling indicated a significant increase in tau in euthymic BD [Cohen's d = 0.39, 95% confidence interval (CI) 0.09–0.69, p = 0.011], and both sigma (d = 0.57, 95% CI 0.07–1.05, p = 0.025) and tau (d = 1.14, 95% CI 0.60–1.64, p < 0.0001) in depressed BD. The mu parameter did not differ from controls.
Conclusions.
Increased cognitive variability may be a core feature of mood disorders. This is the first demonstration of differences in attentional RT distribution parameters between MDD and BD, and BD depression and euthymia. These data highlight the utility of applying measures of IIV to characterize neurocognitive variability and the great potential for future application.
We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or – within the range of the simulated catalogue – on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.
Sand quarrying in 1989 at Sand Fiold, Sandwick, in Orkney resulted in the accidental discovery of a rock-cut chamber containing a cist. Subsequent excavation revealed that this cist had a number of unusual features. The cist slabs had been fitted together exceptionally well and the completed cist was designed to be re-opened by the removal of a side slab. Within the chamber, access was provided to the opening side of the cist and a relieving structure was built over its capstone.
The cist contained cremation and inhumation burials that had been inserted on more than one occasion; as its builders intended. A collection of poorly preserved unburnt bone was found to comprise the remains of two individuals: a young adult and a foetus. Two collections of cremated bone, each derived from a single adult, were also present; one in a Food Vessel Urn, the second forming a pile on the floor and containing two burnt antler tines and two unburnt human teeth. The un-urned cremation deposit and the unburnt bones had been covered in mats of plant fibres derived from grass and sedge. The urn had been lined with basketry, also made from grass. Outside the cist, an exceptionally large collection of fuel ash slag (FAS), derived from a cremation pyre, had been deposited between the cist and the wall of the rock-cut chamber.
Radiocarbon dates indicate that the site and its contents had a long history. The FAS and the foetus skeleton date to 2900–2500 cal BC. Between 2200 and 1900 cal BC the urned cremation and young adult human bones were inserted and charcoal was deposited in the foundation slots for the back wall of the cist. The deposition of the un-urned cremation was dated to 1000–800 cal BC, some 900 years later, when the urn had already fallen over and broken. At this time, it is assumed that the urn was restored to an upright position and propped with stones, while the stone lid for the urn was reused in the foundation slot of the left-hand side of the cist. Reuse and refurbishment over two millennia seem evidenced in the results from this cist.
Several studies demonstrating that central line–associated bloodstream infections (CLABSIs) are preventable prompted a national initiative to reduce the incidence of these infections.
Methods.
We conducted a collaborative cohort study to evaluate the impact of the national “On the CUSP: Stop BSI” program on CLABSI rates among participating adult intensive care units (ICUs). The program goal was to achieve a unit-level mean CLABSI rate of less than 1 case per 1,000 catheter-days using standardized definitions from the National Healthcare Safety Network. Multilevel Poisson regression modeling compared infection rates before, during, and up to 18 months after the intervention was implemented.
Results.
A total of 1,071 ICUs from 44 states, the District of Columbia, and Puerto Rico, reporting 27,153 ICU-months and 4,454,324 catheter-days of data, were included in the analysis. The overall mean CLABSI rate significantly decreased from 1.96 cases per 1,000 catheter-days at baseline to 1.15 at 16–18 months after implementation. CLABSI rates decreased during all observation periods compared with baseline, with adjusted incidence rate ratios steadily decreasing to 0.57 (95% confidence intervals, 0.50–0.65) at 16–18 months after implementation.
Conclusion.
Coincident with the implementation of the national “On the CUSP: Stop BSI” program was a significant and sustained decrease in CLABSIs among a large and diverse cohort of ICUs, demonstrating an overall 43% decrease and suggesting the majority of ICUs in the United States can achieve additional reductions in CLABSI rates.
The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (≳ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.
Previous studies of neurocognitive performance in bipolar disorder (BD) have focused predominantly on euthymia. In this study we aimed to compare the neurocognitive profile of BD patients when depressed with healthy controls and explore the component structure of neurocognitive processes in these populations.
Method
Cognitive tests of attention and executive function, immediate memory, verbal and visuospatial learning and memory and psychomotor speed were administered to 53 patients with a SCID-verified diagnosis of BD depression and 47 healthy controls. Test performance was assessed in terms of statistical significance, effect size and percentile standing. Principal component analysis (PCA) was used to explore underlying cognitive factor structure.
Results
Multivariate analysis revealed an overall group effect, depressed BD patients performing significantly worse than controls. Patients performed significantly worse on 18/26 measures examined, with large effect sizes (d > 0.8) on tests of speed of processing, verbal learning and specific executive/working memory processes. Almost all tests produced at least one outcome measure on which ∼25–50% of the BD sample performed at more than 1 standard deviation (s.d.) below the control mean. Between 20% and 34% of patients performed at or below the fifth percentile of the control group in working memory, verbal learning and memory, and psychomotor/processing speed. PCA highlighted overall differences between groups, with fewer extracted components and less specificity in patients.
Conclusions
Overall, neurocognitive test performance is significantly reduced in BD patients when depressed. The use of different methods of analysing cognitive performance is highlighted, along with the relationship between processes, indicating important directions for future research.
We performed a thorough investigation of mid-infrared heavy-to-light hole intersubband absorption in the valence band of p-doped GaAs quantum wells with AlAs barriers. For the p-type doping a high-purity solid carbon source was used. The experimental results are compared with theoretical simulations. The inclusion of layer inter-diffusion well reproduces the transition energies. We estimate a 6-10 Å inter-diffusion length that is consistent with electron microscopy measurements. A careful analysis of our results provides valuable information for further design of emitters and detectors based on hole intersubband transitions in the valence band.
A primary challenge to the industrial uptake of dye-sensitized solar cells (DSC) is the ability to improve manufacturing efficiency. New thinking is required in terms of lowering cost, improving the process steps and increasing throughput. The typical manufacture of a DSC contains a number of long process steps; the sintering and dyeing of the TiO2 are prime examples. The current solution is to batch process on rigid substrates or use long energy intensive convection ovens for flexible metal substrates. Here we present a method for reducing some of the bottlenecks in the manufacturing process using near infra red radiation to speed up the thermal treatment of TiO2 and silver inks reducing their processing times to 12 and 2 seconds from normal process times of 30 and 10 minutes respectively.
Thin films of SnO2 were prepared via wet chemical method and deposited by dip-coating on glass substrate. The annealing temperatures of the samples were 300, 400, 500 and 600o C, respectively. Water vapor sensor responses were measured and the experimental results are tested using the Freundlich model. The better water vapor sensitivities were obtained for annealing temperatures of 500 and 600oC, respectively. The samples were characterized morphological and structurally by SEM, XRD, Mössbauer spectroscopy and Raman spectroscopy. The fringes features in the ultraviolet-visible region indicate films thickness around 370 nm. The results are discussed in terms of the fine grain size of the samples.
Laryngopharyngeal reflux is a controversial but increasingly made diagnosis used in patients with a collection of often non-specific laryngeal symptoms. It is a clinical diagnosis, and its pathophysiology is currently poorly understood.
Previous reflux research has focused on injurious agents, acid, pepsin and biomarker expression. Failure of intrinsic defences in the larynx may cause changes in laryngeal epithelia, particularly alterations in carbonic anhydrases and E-cadherin. Carbonic anhydrase III levels vary in the larynx in response to laryngopharyngeal reflux, depending on location. Expression of E-cadherin, a known tumour suppressor, is reduced in the presence of reflux. Mucin expression also varies according to the severity of reflux.
Further research is required to define the clinical entity of laryngopharyngeal reflux, and to identify a definitive mechanism for mucosal injury. Understanding this mechanism should allow the development of a comprehensive model, which would enable future diagnostic and therapeutic interventions to be developed.
The study of phase transformations involves making assumptions about interfaces within a material in order to apply mathematical models. An example of this is the Gibbs classical theory of nucleation and growth which is based upon the assumption that the precipitate / matrix interface is sharp. Recent developments in atom probe microscopy have made it possible for the first time to characterize complex three-dimensional internal interfaces within materials to sub-nanometre accuracy. We have used the OPoSAP (Optical Position Sensitive Atom Probe) to characterize the precipitate / matrix interface in the dilute Cu-Co system which is a model alloy for the study of homogeneous nucleation and growth. Interface widths derived from radial composition profiles were measured to be 0.9 ± 0.2 nm in size. The effects of thermal energy, positioning inaccuracies, and statistical limitations on the measurement of interface widths are examined through the use of mathematical models and computer simulations. Similar widths are measured for precipitates in the coarsening regime which shows the interface velocity does not affect the interface width.
In this paper we describe the use of electron backscatter diffraction (EBSD) mapping and electron channeling contrast imaging—in the scanning electron microscope—to study tilt, atomic steps and dislocations in epitaxial GaN thin films. We show results from epitaxial GaN thin films and from a just coalesced epitaxial laterally overgrown GaN thin film. From our results we deduce that EBSD may be used to measure orientation changes of the order of 0.02°, in GaN thin films. As EBSD has a spatial resolution of ≈ 20 nm, this means we have a powerful technique with which to quantitatively map surface tilt. We also demonstrate that channeling contrast in electron channeling contrast images may be used to image tilt, atomic steps and threading dislocations in GaN thin films.
The local structure around In atoms in InGaN epilayers grown by Molecular Beam Epitaxy (MBE) and by Metal-Organic Chemical Vapour Deposition (MOCVD) was studied by means of Extended X-ray Absorption Fine Structure (EXAFS). The averaged In fraction of MOCVD grown samples ranged from 10% to 40% as estimated by Electron Probe Microanalysis (EPMA). The In fraction of MBE grown samples spanned the range from 13% to 96%. The In–N bond length was found to vary slightly with composition, both for MBE and MOCVD grown samples. Moreover, for the same In content, the In-N bond lengths in MOCVD samples were longer than those in MBE grown samples. In contrast, the In-In radial separations in MOCVD and MBE samples were found to be indistinguishable for the same In molar fraction. The In-Ga bond length was observed to deviate from average cation-cation distance predicted by Vegard's law for MBE grown samples which indicates alloy compositional fluctuations.