We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Data on epidemiology trends of paediatric tuberculosis (TB) are limited in China. So, we investigated the clinical and epidemiological profiles in diagnosed TB disease and TB infection patients at Beijing Children’s Hospital. Of 3 193 patients, 51.05% had pulmonary TB (PTB) and 15.16% had extrapulmonary TB (EPTB). The most frequent forms of EPTB were TB meningitis (39.05%), pleural TB (29.75%), and disseminated TB (10.33%). PTB patients were significantly younger and associated with higher hospitalization frequency. Children aged 1–4 years exhibited higher risk of PTB and TB meningitis, and children aged 5–12 years had higher risk of EPTB. The proportion of PTB patients increased slightly from 40.9% in 2012 to 65% in 2019, and then decreased to 17.8% in 2021. The percentage of EPTB cases decreased from 18.3% in 2012 to 15.2% in 2019, but increased to 16.4% in 2021. Among EPTB cases, the largest increase was seen in TB meningitis. In conclusion, female and young children had higher risk of PTB in children. TB meningitis was the most frequent forms of EPTB among children, and young children were at high risk of TB meningitis. The distribution of different types of EPTB differed by age.
The late third-millennium BC Longshan period was a crucial time for state formation in central China. During these centuries, long-distance networks expanded and shared material culture and then cultural practices spread across wider areas precipitating social and ideological developments that presaged the rise of states and cities on the Central Plain. In this research, the authors use multiple (strontium, oxygen and carbon) isotope analyses from the dental enamel of 67 individuals buried at the Xiajin cemetery, Shanxi Province. The results indicate significant long-distance migration among females during the Longshan period, which the authors interpret as evidence of exogamous marriage for political alliance-building—a phenomenon found more widely across Eurasia at the start of the Bronze Age.
SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and network characteristics potentially facilitating transmission. However, limited data on topological structural features has hindered in-depth studies. Existing research is based on snapshot analyses, preventing temporal investigations of network changes. Comparing network characteristics over time offers additional insights into transmission dynamics. We examined confirmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and network characteristics using transmission network topology before and after widespread interventions. Between the two time periods, the percentage of singleton networks increased from 38.9$ \% $ to 62.8$ \% $$ (p<0.001) $; the average shortest path length decreased from 1.53 to 1.14 $ (p<0.001) $; the average betweenness reduced from 0.65 to 0.11$ (p<0.001) $; the average cluster size dropped from 4.05 to 2.72 $ (p=0.004) $; and the out-degree had a slight but nonsignificant decline from 0.75 to 0.63 $ (p=0.099). $ Results show that nonpharmaceutical interventions effectively disrupted transmission networks, preventing further disease spread. Additionally, we found that the networks’ dynamic structure provided more information than solely examining infection curves after applying descriptive and agent-based modeling approaches. In summary, we investigated social mixing and network characteristics of COVID-19 patients during different pandemic stages, revealing transmission network heterogeneities.
Multi-criteria decision analysis (MCDA) is a useful tool in complex decision-making situations and has been used in medical fields to evaluate treatment options and drug selection. We aimed to provide valuable insights on the use of MCDA in health care through examining the research focus of existing studies, major fields, major applications, most productive authors and countries, and most common journals in the domain using a scientometric and bibliometric analysis.
Methods
Publications related to MCDA in health care were identified by searching the Web of Science Core Collection on 14 July 2021. Three bibliometric software programs (VOSviewer, Bibliometrix, and CiteSpace) were used to conduct the analysis.
Results
A total of 410 publications were identified from 196 academic journals (average yearly growth rate of 32% from 1999 to 2021), with 23,637 co-cited references by 871 institutions from 70 countries or regions. The USA was the most productive country (n=80), while the Universiti Pendidikan Sultan Idris (n=16), Université de Montréal (n= 13), and Syreon Research Institute (n=12) were the most productive institutions. The biggest nodes in every cluster of author networks were Aos Alaa Zaidan, Mireille Goetghebeur, and Zoltan Kalo. The top journals in terms of number of articles (n=17) and citations (n=1,673) were Value in Health and the Journal of Medical Systems, respectively. The research hotspots mainly included the analytic hierarchy process (AHP), decision-making, health technology assessment, and healthcare waste management. In the recent literature there was more emphasis on coronavirus disease 2019 (COVID-19) and fuzzy Technique for Order Preference by Similarities to Ideal Solution (TOPSIS). Big data, telemedicine, TOPSIS, and the fuzzy AHP, which are well-developed and important themes, may be the trends in future research.
Conclusions
This study provides a holistic picture of the MCDA-related literature published in health care. MCDA has a broad application in different topic areas and would be helpful for practitioners, researchers, and decision makers working in health care when faced with complex decisions. It can be argued that the door is still open for improving the role of MCDA in health care, both in its technologies and its application.
The aim of this study was to present the clinical characteristics and dynamic changes in laboratory parameters of the coronavirus disease 2019 (COVID-19) in Guangzhou, and explore the probable early warning indicators of disease progression.
Method:
We enrolled all the patients diagnosed with COVID-19 in the Guangzhou No. 8 People’s Hospital. The patients’ demographic and epidemiologic data were collected, including chief complaints, lab results, and imaging examination findings.
Results:
The characteristics of the patients in Guangzhou are different from those in Wuhan. The patients were younger in age, predominately female, and their condition was not commonly combined with other diseases. A total of 75% of patients suffered fever on admission, followed by cough occurring in 62% patients. Comparing the mild/normal and severe/critical patients, being male, of older age, combined with hypertension, abnormal blood routine test results, raised creatine kinase, glutamic oxaloacetic transaminase, lactate dehydrogenase, C-reactive protein, procalcitonin, D-dimer, fibrinogen, activated partial thromboplastin time, and positive proteinuria were early warning indicators of severe disease.
Conclusion:
The patients outside epidemic areas showed different characteristics from those in Wuhan. The abnormal laboratory parameters were markedly changed 4 weeks after admission, and also were different between the mild and severe patients. More evidence is needed to confirm highly specific and sensitive potential early warning indicators of severe disease.
The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.
In this research paper we filter and verify miRNAs which may target silent information regulator homolog 2 (SIRT2) gene and then describe the mechanism whereby miRNA-212 might regulate lipogenic genes in mammary epithelial cell lines via targeting SIRT2. Bioinformatics analysis revealed that the bovine SIRT2 gene is regulated by three miRNAs: miR-212, miR-375 and miR-655. The three miRNAs were verified and screened by qRT-PCR, western blot, and luciferase multiplex verification techniques and only miR-212 was shown to have a targeting relationship with SIRT2. The results of co-transfecting miR-212 and silencing RNA (siRNA) showed that by targeting SIRT2, miR-212 can regulate the expression of fatty acid synthetase (FASN) and sterol regulatory element binding factor 1 (SREBP1) but not peroxisome proliferator-activated receptor gamma (PPARγ). Measurement of triglyceride (TAG) content showed that miR-212 increased the fat content of mammary epithelial cell lines. The study indicates that miR-212 could target and inhibit the expression of the SIRT2 gene to promote lipogenesis in mammary epithelial cell lines.
This study aimed to evaluate the effectiveness of hypertension management and analyse the factors associated with blood pressure reduction within China’s primary healthcare system.
Background:
Hypertension is one of the leading risk factors for global disease burden and is strongly associated with cardiovascular diseases. In China, hypertension is a serious public health problem, but few studies have evaluated the effectiveness of hypertension management in China’s primary healthcare system.
Methods:
The study sites were 24 primary healthcare institutions, selected using multistage stratified random sampling method. In each institution, hypertension patients aged at least 35 years who agreed to participate and had no disabilities or mental health problems were enrolled for hypertension management. Participants received comprehensive interventions in the primary healthcare system via a team. After a one-year intervention, data from 6575 hypertension patients were analysed to check the effectiveness of hypertension management and examined factors associated with hypertension control.
Findings:
There was an overall mean reduction of 4.5 mmHg in systolic blood pressure (SBP) and 1.9 mmHg in diastolic blood pressure (DBP). The blood pressure reduction after one year was greater in rural patients than in urban patients, 6.6 mmHg versus 3.4 mmHg for SBP and 2.6 mmHg versus 1.6 mmHg for DBP, respectively. The hypertension control rate also increased more in rural areas (22.1%) than in urban areas (10.6%) after the one-year intervention. Age, body mass index, region and being in an urban area had a significant negative association with the reduction of SBP (P < 0.05). Education level and baseline SBP showed a significant positive association (P < 0.05).
Conclusions:
Community-based hypertension management by general practitioners was feasible and effective. The effectiveness of hypertension management in rural areas was greater than in urban areas. Intervention strategies should pay more attention to patients in rural areas and western China.
Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.
The influence of the content of trifluoroacetate (TFA), in the precursor solution, on the critical current density (Jc) of YBa2Cu3O7−x (YBCO) superconducting films was investigated. We found that a TFA/Ba ratio of 0.68 is optimal to obtain high-performance YBCO films. Using this optimal solution, we then developed an ultraviolet (UV) light soaking technique to prepare YBCO films. This resulted in the constituent elements being uniformly distributed in the films, and this then enabled enhanced Jc. The addition of water vapor during the UV soaking process decreased the content of carbon residue in the films, and further increased the Jc of the resulting YBCO films.
Aplastic anaemia (AA) is characterised by pancytopenia resulting from a marked reduction in haemopoietic stem cells (HSC). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the bone marrow (BM) microenvironment, including BM-derived mesenchymal stromal cells (BMSC). The purpose of this study was to analyse the biological effect of nutritional supplement (NS), a dietary supplement consisting of thirty-six compounds: amino acids, nucleotides, vitamins and micronutrients on the BMSC of AA rats. The AA rat model was established by irradiating X-ray (2·5 Gy) and intraperitoneal injections of cyclophosphamide (35 mg/kg; Sigma) and chloramphenicol (35 mg/kg; Sigma). Then AA rats were fed with NS in a dose-dependent manner (2266·95, 1511·3, 1057·91 mg/kg d) by intragastric administration. The effect of NS on the BMSC of AA rats was analysed. As compared with AA rats, NS treatment significantly improved these peripheral blood parameters and stimulated the proliferation of total femoral nucleated cells. NS treatment affected proliferative behaviour of BMSC and suppressed BMSC differentiation to adipocytes. Furthermore, NS treatment of AA rats accelerated osteogenic differentiation of BMSC and enhanced bone mineral density. Co-incubation of HSC with mesenchymal stromal cells and serum from AA rats subjected to high-dose NS markedly improved the yield of CD34+cells. Protein microarray analysis revealed that there were eleven differentially expressed proteins in the NS group compared with the AA rat group. The identified specific NS might be implicated in rehabilitation of BMSC in AA rats, suggesting their potential of nutritional support in AA treatment.
Background: ATP-sensitive K+ (KATP) channels couple metabolic state to cellular excitability. Activation of neuronal and astrocytic mitochondrial KATP (mitoKATP) channels regulates a variety of neuronal functions. However, less is known about the impact of mitoKATP on tonic γ-aminobutyric acid (GABA) inhibition. Tonic GABA inhibition is mediated by the binding of ambient GABA on extrasynaptic GABA A-type receptors (GABAARs) and is involved in regulating neuronal excitability. Methods: We determined the impact of activation of KATP channels with diazoxide (DIZ) on tonic inhibition and recorded tonic current from rat cortical layer 5 pyramidal cells by patch-clamp recordings. Results: We found that neonatal tonic current increased with an increase in GABA concentration, which was partially mediated by the GABA A-type receptor (GABAAR) α5, and likely the δ subunits. Activation of KATP channels resulted in decreased tonic current in newborns, but there was increased tonic current during the second postnatal week. Conclusions: These findings suggest that activation of KATP channels with DIZ regulates GABAergic transmission in neocortical pyramidal cells during development.
Musa L. was previously separated into five sections (Eumusa, Rhodochlamys, Callimusa, Australimusa and Ingentimusa) based on basic chromosome numbers and morphological characters. However, several molecular analyses currently support restructuring of Musa species into two sections, Musa and Callimusa. The application of simple sequence repeat molecular marker analysis to Musa phylogeny provided valuable, supplemental information about the classification of, and relationships between, Musa species and subspecies. Totally, 28 accessions of Musa acuminata Colla subspecies and varieties and 25 accessions of other Musa species were evaluated; 12 primers produced 91 polymorphic bands, polymorphic information content ranged from 0.4473 to 0.8394 (average = 0.7226), indicating that the primers showed a high level of polymorphism. Our results generally agreed with previous phylogenetic analyses based on molecular data. One clade comprised species of sections Australimusa and Callimusa (X= 10/9); most species of sections Eumusa and Rhodochlamys (X= 11) formed the other clade. The relationships between most species were as expected; however, some species did not conform to findings of previous studies. A wide range of variability was observed in the M. acuminata complex. M. acuminata var. chinensis and M. acuminata subsp. 522 showed the most distant relationships to other subspecies: Musa laterita, Musa ornata and Musa velutina clustered with M. acuminata var. chinensis, suggesting that they may constitute a secondary gene pool for the improvement of cultivated bananas. Molecular data indicated that Musa tongbiguanensis Chen You & Yao-Ting Wu, which was observed and described by our research group in Yunnan, China, was a distinct, new species.
A noncentrosymmetric aluminum borate crystal, Al5BO9, was obtained via high-temperature solution method. Considering the structure diversities of Al5BO9, the single crystal structure was cautiously redetermined before the investigation. The fundamental building blocks of the structure are BO3 triangles, AlO4 tetrahedra, and AlO6 octahedra. Since Al5BO9 only consists of strong covalent B–O and Al–O bonds, it is worth investigating the structure–optical property relationship thoroughly, especially the linear and nonlinear optical properties. To gain further insight into the origin of the nonlinear optical response of Al5BO9, the electronic structure calculations, second harmonic generation (SHG)-weighted electron density, and dipole moment of polyhedra were analyzed in detail. All evidences deduced from calculated results indicate that the SHG contribution from the Al–O polyhedra is more pronounced than that of the BO3 group in Al5BO9, which is anticipated to open a window for the search and design of new inorganic materials.
In this contribution, the structural, mechanical, and thermal properties of MSiO4 have been investigated theoretically and the anisotropy of elastic properties has been discussed in detail. The heterogeneous bonding nature was revealed from density functional theory computations and chemical bond theory (CBT). The Young's modulus and shear modulus of MSiO4 were anisotropic and the anisotropy on different planes was quite different. The thermal expansion coefficients of MSiO4 estimated from CBT were 5.1 × 10−6 and 4.4 × 10−6 K−1 for ZrSiO4 and HfSiO4, respectively. These results were quite consistent with the experiments. The temperature dependent thermal conductivities of MSiO4 were estimated from Slack's model, the minimum thermal conductivity was predicted to be 1.54 and 1.24 W m−1 K−1 for ZrSiO4 and HfSiO4, respectively. Our theoretical results show that MSiO4 are excellent thermal barrier materials with good tolerance to withstand the mechanical damage.
The Shuidonggou site cluster in northern China contains 12 different early prehistoric sequences with great potential to cast light on the transition to Upper Palaeolithic behaviour in East Asia. Here researchers present the latest results from Locality 2, reporting seven occupation levels with hearths, animal bone and diverse industries. Although previously compared with European Upper Palaeolithic sequences, the new work proposes a different trajectory of development. Distinctive macroblade technology arrived in the area, possibly from Mongolia or Siberia, about 41000–34000 years ago. This industry subsequently disappeared, to be replaced by flake technologies.
The accurate determination of residual stress/strain in thin films is especially important in the emerging field of MicroElectroMechanical Systems (MEMS). In this article, a focused ion beam (FIB) moiré method is proposed and demonstrated to measure the strain in MEMS structures. This technique is based on the advantages of the FIB system in nano-fabrication, imaging, in-situ deposition, and fine adjustment. Nano-grating lines with 70 nm width and 140 nm spacing are directly written on the top of the MEMS structures by ion milling without the requirement of an etch mask. The FIB moiré pattern is formed by the interference between a prepared specimen grating and FIB raster scan lines. The strain of the MEMS structures is derived by calculating the average spacing of moiré fringes. Since the local strain of a MEMS structure itself can be monitored during the process, the FIB moiré technique has many potential applications in the mechanical metrology of MEMS. As an example, the strain distribution along the sticking MEMS structures, and the contribution of surface oxidization and mass loading to the cantilever strain is determined by this FIB moiré technique.
The accurate determination of residual stress/strain in thin films is especially important in the emerging field of MicroElectroMechanical Systems (MEMS). In this article, a focused ion beam (FIB) moiré method is proposed and demonstrated to measure the strain in MEMS structures. This technique is based on the advantages of the FIB system in nano-fabrication, imaging, in-situ deposition, and fine adjustment. Nano-grating lines with 70 nm width and 140 nm spacing are directly written on the top of the MEMS structures by ion milling without the requirement of an etch mask. The FIB moiré pattern is formed by the interference between a prepared specimen grating and FIB raster scan lines. The strain of the MEMS structures is derived by calculating the average spacing of moiré fringes. Since the local strain of a MEMS structure itself can be monitored during the process, the FIB moiré technique has many potential applications in the mechanical metrology of MEMS. As an example, the strain distribution along the sticking MEMS structures, and the contribution of surface oxidization and mass loading to the cantilever strain is determined by this FIB moiré technique.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.