We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cowl-induced incident shock wave/boundary layer interactions (ISWBLIs) under the influence of shoulder expansion represent one of the dominant phenomena in supersonic inlets. To provide a more comprehensive understanding of how an expansion corner affects the ISWBLI, a detailed experimental and analytical study is performed in a Mach 2.73 flow in this work. Pressure measurement, schlieren photography and surface oil-flow visualisation are used to record flow features, including the pressure distribution, separation extent and surface-flow topological structures. Our results reveal three types of ISWBLIs influenced by the expansion corner. When the shock intensity is weak, the separation is small scale with the expansion waves emanating from the expansion corner. This is the first type of expansion-corner-affected ISWBLI (EC-ISWBLI). When the incident shock wave is strong, large-scale separation occurs, accompanied by the disappearance of expansion waves, forming the second type of EC-SWBLI. The expansion corner induces a ‘lock-in’ effect in which the separation onset is consistently locked near the expansion corner regardless of the incident shock intensity and impingement position. The third type of EC-ISWBLI occurs when the shock is sufficiently strong and the impingement point is close to the expansion corner. In this interaction, the ‘lock-in’ effect ceases to manifest. Moreover, a shock polar-incorporating inviscid model is employed to elucidate the shock patterns. Two criteria are established by combining free interaction theory with this model. The first criterion provides valuable insights into the evolution of separations with a minimal overall pressure rise and the second criterion determines the threshold for the occurrence of the ‘lock-in’ effect.
Dignity therapy (DT) is well-established in adults, and it might potentially benefit the younger population. This study aims to develop a pediatric family-based dignity therapy (P-FBDT) protocol for terminally ill children and their families.
Methods
A parallel mixed-methods design was used. The P-FBDT protocol was developed based on the adult DT, and meanwhile by taking children-specific dignity characteristics and Chinese family-oriented culture into consideration. The protocol was then evaluated and modified based on the quantitative and qualitative feedback from 2-round surveys of 14 pediatric oncology or pediatric palliative care experts.
Results
The P-FBDT involves terminally ill children and their families in meaningful interactions including a series of conversations and creative activities, which will be recorded and then edited into a document-based generativity entity. The P-FBDT protocol was recognized as highly reasonable and the P-FBDT interview guide was endorsed as important, acceptable, clear, comprehensive, and suitable to be used in pediatric palliative care practice in Chinese culture (>90%). Potential benefits, possible challenges, and practical considerations of the P-FBDT were also proposed.
Significance of results
The P-FBDT was perceived to be potentially beneficial to terminally ill children and their families by engaging in a series of meaningful family interactions and creating a lasting memento to be preserved. The protocol needs to be pilot tested among terminally ill children and families for feasibility and potential efficacy in practice.
Buckminsterfullerene (C60) is one of the most important carbon-based nanoparticles (CNPs). Industrial-scale production of C60 has reached the level of tons; release to the environment has been confirmed (Tremblay, 2002; Qiao et al., 2007). The present study was devoted to study of the effect of clay minerals on the migration process of C60. Molecular dynamics (MD) simulations were used to study the interaction of CNPS with clay minerals through study of the adsorption of C60 on various surfaces of kaolinite and pyrophyllite in vacuum and aqueous environments. Two kinds of surfaces, hydrophobic siloxane surfaces and hydrophilic hydroxyl surfaces, were investigated. C60 is mainly adsorbed onto the vacancy of the six-membered ring, composed of SiO4 tetrahedra or AlO6 octahedra, on clay-mineral surfaces. A single adsorption layer consisting of C60 molecules with an ordered hexagonal arrangement is presented for all surfaces in vacuum. In aqueous environments, however, the monolayer appears on the siloxane surfaces only, while a cluster of C60 molecules is formed on the hydroxyl surfaces. Free energies prove that the attachment of two C60 molecules is stronger than the adsorption of C60 onto the hydroxyl surface in water, which is the reason for unfavorable formation of C60 monolayer. On the other hand, the adsorption free energy is more negative on the hydrophobic siloxane surface, explaining the monolayer formation. The existence of water, which forms hydration layers on the surfaces of clay minerals, produces energy barriers, and reduces the adsorption affinity to some extent. Because clay minerals act as geosorbents in the environment, the present study is significant in terms of understanding the migration and fate of CNPS in nature.
Based on the path encoding pulse compression teleology, a novel method for obtaining high-power microwave (HPM) pulse with ultrahigh repetition frequency is proposed in this paper. The mechanism of the path encoding pulse compression teleology is first introduced. And then, the obtained HPM pulse is analyzed. Theoretical analysis shows that the peak power of MW level and the repetition frequency of MHz level for the generated HPM pulse can be easily reached. To demonstrate the effectiveness of this method for obtaining HPM pulse with ultrahigh repetition frequency characteristic, a HPM-obtaining experiment was carried out based on an S-band microwave source. The HPM pulses with the width of 1 ns, 2 ns, and 3 ns are studied, respectively. The measured results show that the HPM pulse with the power higher than 100 kW and the repetition frequency of 250 kHz at the frequency of 2.856 GHz is easily obtained. The repetition frequency of the generated HPM pulse can be easily changed. Because the pulse with the power higher than 100 kW and the repetition frequency of several hundreds of kHz is obtained for the first time, this type of pulse will have a broad prospect of application in the communication, radar, and electronic countermeasure fields. In addition, the effect experiment of interfering communication and control links was carried out by utilizing the ultrahigh repetition frequency characteristic of the generated HPM pulse. Also, the experiment results show the feasibility of this pulse for interfering the communication and control links.
Monads prove to be useful mathematical tools in theoretical computer science, notably in denoting different effects of programming languages. In this paper, we investigate a type of monads which arise naturally from Keimel and Lawson’s $\mathbf{K}$-ification.
A subcategory of $\mathbf{TOP}_{\mathbf{0}}$ is called of type $\mathrm{K}^{*}$ if it consists of monotone convergence spaces and is of type $\mathrm K$ in the sense of Keimel and Lawson. Each such category induces a canonical monad $\mathcal K$ on the category $\mathbf{DCPO}$ of dcpos and Scott-continuous maps, which is called the order-$\mathbf{K}$-ification monad in this paper. First, for each category of type $\mathrm{K}^{*}$, we characterize the algebras of the corresponding monad $\mathcal K$ as k-complete posets and algebraic homomorphisms as k-continuous maps, from which we obtain that the order-$\mathbf{K}$-ification monad gives the free k-complete poset construction over the category $\mathbf{POS}_{\mathbf{d}}$ of posets and Scott-continuous maps. In addition, we show that all k-complete posets and Scott-continuous maps form a Cartesian closed category. Moreover, we consider the strongness of the order-K-ification monad and conclude with the fact that each order-K-ification monad is always commutative.
In this study, the length scaling for the boundary layer separation induced by two incident shock waves is experimentally and analytically investigated. The experiments are performed in a Mach 2.73 flow. A double-wedge shock generator with two deflection angles ($\alpha _1$ and $\alpha _2$) is employed to generate two incident shock waves. Two deflection angle combinations with an identical total deflection angle are adopted: ($\alpha _1 = 7^\circ$, $\alpha _2 = 5^\circ$) and ($\alpha _1 = 5^\circ$, $\alpha _2 = 7^\circ$). For each deflection angle combination, the flow features of the dual-incident shock wave–turbulent boundary layer interactions (dual-ISWTBLIs) under five shock wave distance conditions are examined via schlieren photography, wall-pressure measurements and surface oil-flow visualisation. The experimental results show that the separation point moves downstream with increasing shock wave distance ($d$). For the dual-ISWTBLIs exhibiting a coupling separation state, the upstream interaction length ($L_{int}$) of the separation region approximately linearly decreases with increasing $d$, and the decrease rate of $L_{int}$ with $d$ increases with the second deflection angle under the condition of an identical total deflection angle. Based on control volume analysis of mass and momentum conservations, the relation between $L_{int}$ and $d$ is analytically determined to be approximately linear for the dual-ISWTBLIs with a coupling separation region, and the slope of the linear relation obtained analytically agrees well with that obtained experimentally. Furthermore, a prediction method for $L_{int}$ of the dual-ISWTBLIs with a coupling separation region is proposed, and the relative error of the predicted $L_{int}$ in comparison with the experimental result is $\sim$10 %.
Interactions between the boundary layer and two successive incident shock waves (ISWs) often occur in the supersonic mixed-compression inlets. However, the flow mechanism involved in such interactions has been studied rarely. In this study, we investigate experimentally and analytically the turbulent boundary layer separation flow induced by the single ISW and dual ISWs at the identical total deflection angles in a Mach 2.73 flow. Schlieren photography, wall pressure measurement and surface oil-flow visualisation are employed to diagnose the flow field. Experiments with the impingement points of the two ISWs intersecting on the bottom wall exhibit a separated flow with a triangle-like separation bubble, namely the first kind of dual-ISW/turbulent boundary layer interaction (ISWTBLI). Comparative studies show that various flow features of this kind of dual-ISWTBLI, including the extent of the separation region, pressure distribution and surface-flow topological structures, are nearly identical to those of the single-ISWTBLI with an identical total deflection angle. As the distance between the two ISWs increases, the shape of the separation region in the dual-ISWTBLI changes from triangle-like to quadrilateral-like, and the height of the separation region decreases accordingly, forming the second kind of dual-ISWTBLI. Furthermore, an inviscid model is developed for the dual-ISWTBLI to describe the complex shock wave system and elucidate the cause of a quadrilateral-like separation bubble in the second kind of dual-ISWTBLI. Moreover, based on a previous work by Souverein et al. (J. Fluid Mech., vol. 714, 2013, pp. 505–535) on the single-ISWTBLI, a modified scaling method is established for the first kind of dual-ISWTBLI.
Little is known about the impact of modifiable risk factors on blood pressure (BP) trajectories and their associations with hypertension (HTN). We aimed to identify BP trajectories in normotensive Chinese adults and explore their influencing factors and associations with HTN. We used data from 3436 adults with at least four BP measurements between 1989 and 2018 in the China Health and Nutrition Survey, an ongoing cohort study. We measured BP using mercury sphygmomanometers with appropriate cuff sizes in all surveys. We used group-based trajectory modelling to identify BP trajectories between 1989 and 2009 and multiple logistic and Cox regression models to analyse their influencing factors and associations with HTN in 2011–2018. We identified five systolic blood pressure (SBP) trajectories, ‘Low-increasing (LI)’, ‘Low–stable (LS)’, ‘Moderate-increasing (MI)’, ‘High-stable (HS)’ and ‘Moderate-decreasing (MD)’, and four diastolic blood pressure (DBP) trajectories classified as ‘Low-increasing (LI)’, ‘Moderate–stable (MS)’, ‘Low-stable (LS)’ and ‘High-increasing (HI)’. People with higher physical activity (PA) levels and lower waist circumferences (WC) were less likely to be in the SBP LI, MI, HS and MD groups (P < 0·05). People with higher fruit and vegetable intakes, lower WCs and salt intakes and higher PA levels were less likely to be in the DBP LI, MS and HI groups (P < 0·05). Participants in the SBP HS group (hazard ratio (HR) 2·01) or the DBP LI, MS and HI groups (HR 1·38, 1·40, 1·71, respectively) had higher risks of HTN (P < 0·05). This study suggests that BP monitoring is necessary to prevent HTN in the Chinese population.
This article provides a comprehensive and critical synthesis of the methods utilized in studies investigating the role of language aptitude in second language acquisition (SLA). The synthesis is informed by sixty-five studies generated by a thorough search of the literature, three meta-analyses (Li, 2015, 2016, 2017), and a thematic issue of Studies in Second Language Acquisition (Li & DeKeyser, in press). The synthesis starts by identifying three categories of research investigating the role of aptitude in naturalistic learning, aptitude's associations with instructed learning, and the nature of aptitude pertaining to whether it increases with age and learning experience and how it is connected to other individual difference variables. The synthesis then presents an overview and critique of major measures of aptitude and discusses the construct validity of aptitude measures based on the principles of psychometric assessments. Specifically, the measures are scrutinized along the dimensions of reliability, content validity, divergent/convergent validity, and predictive validity. The content and measurement of implicit aptitude—a newly emerged construct in SLA—are highlighted. The synthesis proceeds to summarize and vet the measures of the outcome variable of aptitude research—L2 proficiency. Throughout the synthesis, methodological features are summarized, issues are identified, and remedies are proposed.
Antipsychotics are widely used for treating patients with psychosis, and target threshold psychotic symptoms. Individuals at clinical high risk (CHR) for psychosis are characterized by subthreshold psychotic symptoms. It is currently unclear who might benefit from antipsychotic treatment. Our objective was to apply a risk calculator (RC) to identify people that would benefit from antipsychotics.
Methods
Drawing on 400 CHR individuals recruited between 2011 and 2016, 208 individuals who received antipsychotic treatment were included. Clinical and cognitive variables were entered into an individualized RC for psychosis; personal risk was estimated and 4 risk components (negative symptoms-RC-NS, general function-RC-GF, cognitive performance-RC-CP, and positive symptoms-RC-PS) were constructed. The sample was further stratified according to the risk level. Higher risk was defined based on the estimated risk score (20% or higher).
Results
In total, 208 CHR individuals received daily antipsychotic treatment of an olanzapine-equivalent dose of 8.7 mg with a mean administration duration of 58.4 weeks. Of these, 39 (18.8%) developed psychosis within 2 years. A new index of factors ratio (FR), which was derived from the ratio of RC-PS plus RC-GF to RC-NS plus RC-CP, was generated. In the higher-risk group, as FR increased, the conversion rate decreased. A small group (15%) of CHR individuals at higher-risk and an FR >1 benefitted from the antipsychotic treatment.
Conclusions
Through applying a personal risk assessment, the administration of antipsychotics should be limited to CHR individuals with predominantly positive symptoms and related function decline. A strict antipsychotic prescription strategy should be introduced to reduce inappropriate use.
To measure the associations of sociodemographic and behavioural factors with fruit and vegetable consumption among adults in China.
Design:
A cross-sectional study.
Setting:
A 2015 wave of the China Health and Nutrition Survey.
Participants:
Totally, 11 910 adults aged 18 to 64 years.
Results:
Adjusted log binomial regression analyses showed that adults with higher income levels had higher fruit intake than those with low income levels (medium income group, risk ratio (RR): 1·28; 95 % CI: 1·16, 1·41; high income group, RR: 1·58; 95 % CI: 1·43, 1·74). Current smokers had lower fruit intake than non-smokers (RR: 0·86; 95 % CI: 0·77, 0·96). Adults living in southern China had higher vegetable intake (RR: 1·88; 95 % CI: 1·76, 2·01) but lower fruit intake (RR: 0·85; 95 % CI: 0·79, 0·91) than adults in northern China. With increasing age, adults had higher fruit intake (50–64 years, RR: 1·20; 95 % CI: 1·09, 1·33; reference category 18–34 years) and higher vegetable intake (35–49 years, RR: 1·13; 95 % CI: 1·05, 1·22; 50–64 years, RR: 1·22; 95 % CI: 1·13, 1·31).
Conclusions:
Our findings identify a range of sociodemographic and behavioural factors associated with fruit and vegetable consumption among Chinese adults. They also point to the need for public health nutrition interventions for socially disadvantaged populations in China.
Only 30% or fewer of individuals at clinical high risk (CHR) convert to full psychosis within 2 years. Efforts are thus underway to refine risk identification strategies to increase their predictive power. Our objective was to develop and validate the predictive accuracy and individualized risk components of a mobile app-based psychosis risk calculator (RC) in a CHR sample from the SHARP (ShangHai At Risk for Psychosis) program.
Method
In total, 400 CHR individuals were identified by the Chinese version of the Structured Interview for Prodromal Syndromes. In the first phase of 300 CHR individuals, 196 subjects (65.3%) who completed neurocognitive assessments and had at least a 2-year follow-up assessment were included in the construction of an RC for psychosis. In the second phase of the SHARP sample of 100 subjects, 93 with data integrity were included to validate the performance of the SHARP-RC.
Results
The SHARP-RC showed good discrimination of subsequent transition to psychosis with an AUC of 0.78 (p < 0.001). The individualized risk generated by the SHARP-RC provided a solid estimation of conversion in the independent validation sample, with an AUC of 0.80 (p = 0.003). A risk estimate of 20% or higher had excellent sensitivity (84%) and moderate specificity (63%) for the prediction of psychosis. The relative contribution of individual risk components can be simultaneously generated. The mobile app-based SHARP-RC was developed as a convenient tool for individualized psychosis risk appraisal.
Conclusions
The SHARP-RC provides a practical tool not only for assessing the probability that an individual at CHR will develop full psychosis, but also personal risk components that might be targeted in early intervention.
Few of the previous studies of clinical high risk of psychosis (CHR) have explored whether outcomes other than conversion, such as poor functioning or treatment responses, are better predicted when using risk calculators. To answer this question, we compared the predictive accuracy between the outcome of conversion and poor functioning by using the NAPLS-2 risk calculator.
Methods
Three hundred CHR individuals were identified using the Chinese version of the Structured Interview for Prodromal Symptoms. Of these, 228 (76.0%) completed neurocognitive assessments at baseline and 199 (66.3%) had at least a 1-year follow-up assessment. The latter group was used in the NAPLS-2 risk calculator.
Results
We divided the sample into two broad categories based on different outcome definitions, conversion (n = 46) v. non-conversion (n = 153) or recovery (n = 138) v. poor functioning (n = 61). Interestingly, the NAPLS-2 risk calculator showed moderate discrimination of subsequent conversion to psychosis in this sample with an area under the receiver operating characteristic curve (AUC) of 0.631 (p = 0.007). However, for discriminating poor functioning, the AUC of the model increased to 0.754 (p < 0.001).
Conclusions
Our results suggest that the current risk calculator was a better fit for predicting a poor functional outcome and treatment response than it was in the prediction of conversion to psychosis.
Fractal features of the turbulent/non-turbulent interface (TNTI) in shock wave/turbulent boundary-layer interaction (SWBLI) flows are essential in understanding the physics of the SWBLI and the supersonic turbulent boundary layer, yet have received almost no attention previously. Accordingly, this study utilises a high spatiotemporal resolution visualisation technique, ice-cluster-based planar laser scattering (IC-PLS), to acquire the TNTI downstream of the reattachment in a SWBLI flow. Evolution of the fractal features of the TNTI in this SWBLI flow is analysed by comparing the parameters of the TNTI acquired in this study with those from a previous result (Zhuang et al.J. Fluid Mech., vol. 843, 2018a).
This study aim to derive and validate a simple and well-performing risk calculator (RC) for predicting psychosis in individual patients at clinical high risk (CHR).
Methods
From the ongoing ShangHai-At-Risk-for-Psychosis (SHARP) program, 417 CHR cases were identified based on the Structured Interview for Prodromal Symptoms (SIPS), of whom 349 had at least 1-year follow-up assessment. Of these 349 cases, 83 converted to psychosis. Logistic regression was used to build a multivariate model to predict conversion. The area under the receiver operating characteristic (ROC) curve (AUC) was used to test the effectiveness of the SIPS-RC. Second, an independent sample of 100 CHR subjects was recruited based on an identical baseline and follow-up procedures to validate the performance of the SIPS-RC.
Results
Four predictors (each based on a subset of SIPS-based items) were used to construct the SIPS-RC: (1) functional decline; (2) positive symptoms (unusual thoughts, suspiciousness); (3) negative symptoms (social anhedonia, expression of emotion, ideational richness); and (4) general symptoms (dysphoric mood). The SIPS-RC showed moderate discrimination of subsequent transition to psychosis with an AUC of 0.744 (p < 0.001). A risk estimate of 25% or higher had around 75% accuracy for predicting psychosis. The personalized risk generated by the SIPS-RC provided a solid estimate of conversion outcomes in the independent validation sample, with an AUC of 0.804 [95% confidence interval (CI) 0.662–0.951].
Conclusion
The SIPS-RC, which is simple and easy to use, can perform in the same manner as the NAPLS-2 RC in the Chinese clinical population. Such a tool may be used by clinicians to counsel appropriately their patients about clinical monitor v. potential treatment options.
Tensile properties of different directions of X70 pipeline steel plate were tested, and microstructural evolutions of different zones along the transverse direction (TD) were also investigated using electron backscatter diffraction. The highest strength values (yield strength and ultimate strength) appear at TD, and the diagonal direction shows the largest uniform elongation. The elongations of the polygonal ferrite and quasi polygonal ferrite grains increase with the decrease in the distance to the fracture zone. The ratio between high-angle grain boundaries and low-angle grain boundaries in the as-received steel is about 7/3 and starts to decrease from the fillet zone to the fracture zone. The refinement of grains occurs adjacent to the fracture section with the formation of subgrains. With the increase in tensile strain, the intensities of cube and γ-fiber textures increase sharply, and the reinforcement of the (111)$\left[ {\bar{1}\bar{1}2} \right]$ component was obviously larger than the (111)$\left[ {1\bar{2}1} \right]$ component in the γ-fiber texture during tensile deformation.
Previous studies have demonstrated adverse mental health effects of Pb exposure. The purpose of this study is to investigate the relationship between consumption of preserved egg (PE), a high-Pb-containing food and depressive symptoms among adults in China. A sample of 25 213 adults (mean age 41·4 (sd 11·8) years; males, 53·9 %) in Tianjin, China, was studied in a cross-sectional analysis. Dietary intake including PE was assessed using a valid self-administered FFQ. Depressive symptoms were assessed using the Self-Rating Depression Scale (SDS). The association was estimated by OR using logistic regression models adjusted for multiple confounders. The prevalence of elevated depressive symptoms was 6·6 % (SDS≥50). Compared with the least frequent PE consumption (<once/week), multivariable adjusted OR for elevated depressive symptoms were 1·52 (95 % CI 1·28, 1·81), 2·24 (95 % CI 1·76, 2·81) and 3·31 (95 % CI 2·52, 4·30) for consumption of once, 2–3 times and ≥4 times/week, respectively (Pfor trend<0·0001), indicating a clear dose–response relationship. The results suggested that higher consumption of PE was strongly associated with depressive symptoms among adults in China. These findings underscore the need to consider dietary Pb exposure as a risk factor for psychological distress.
The hot deformation behavior of Nb–V–Ti microalloyed ultra-high strength steel was investigated by isothermal compression at 900–1200 °C with strain rates from 0.01 to 10 s−1. The microstructure evolution and precipitation behavior were studied using an optical microscope and a transmission electron microscope Results indicate that the peak stress of experimental steel increases with increasing the strain rate and decreasing the deformation temperature. The constitutive equation of hot deformation was developed with the activation energy Q being about 407.29 kJ/mol. The processing maps were also obtained to identify the instable regions of the flow behavior and to evaluate the efficiency of hot deformation. The size of dynamically recrystallized grains increases gradually with a decrease in the strain rate. Three types of carbides were identified, namely M3C, rich-Ti MC, and rich-Nb MC. With the increase of the deformation rate, the amounts of carbides increase, and the average sizes of the carbides decrease gradually.
Laminate sheets attract increasing attention from researchers and engineers. In this paper, Al/Ti/Al laminate sheets were fabricated by using cryogenic roll bonding for first time. The edge defects, mechanical properties, and interface bonding of laminate sheets by cryogenic roll bonding technique were compared with these by room-temperature roll bonding technique. Results show that there are some edge cracks in laminate sheets by room-temperature roll bonding while they do not appear when subjected to cryogenic roll bonding. The ultimate tensile stress of laminate sheets by cryogenic roll bonding increases up to 36.7% compared to that by room-temperature roll bonding. When laminate sheets are rolled to 0.125 mm from 2.025 mm, the interfaces between Al and Ti layers are bonded well for both cryogenic roll bonding and room-temperature roll bonding. Finally, we discussed the improvement in edge quality and mechanical properties and the mechanism of interface bonding of Al/Ti/Al laminate sheets during cryogenic roll bonding.